Medical Studies and Health Journal (SEHAT)

Vol 1 (3) 2024 : 243-256

Effectiveness of Preventive Health Programs in Mitigating Chronic Diseases: A Meta-Analytical Review

Efektivitas Program Kesehatan Preventif dalam Mitigasi Penyakit Kronis: Tinjauan Meta-Analitik

Saeful Amin

Universitas Bakti Tunas Husada *saefulamin@universitas-bth.ac.id

ABSTRACT

This study aims to examine the effectiveness of digital health interventions in improving the scalability and sustainability of preventive health programs for chronic disease prevention. Using meta-analysis methods, this research synthesizes the results of various studies evaluating preventive health programs involving digital technology, and compares them with traditional approaches. Meta-analysis results show that digital health interventions significantly improve program effectiveness in reducing chronic disease risk, with significant contributions to population reach and sustainability of interventions. These findings provide important insights for the development of more inclusive and sustainable preventive health programs, and recommend the adoption of digital technologies in health systems to improve public health outcomes.

Keywords: Digital health interventions, preventive health programs, chronic diseases, scalability, sustainability, meta-analysis.

ABSTRAK

Penelitian ini bertujuan untuk mengkaji efektivitas intervensi kesehatan digital dalam meningkatkan skalabilitas dan keberlanjutan program kesehatan preventif untuk pencegahan penyakit kronis. Menggunakan metode meta-analisis, penelitian ini mensintesis berbagai hasil studi yang mengevaluasi program kesehatan preventif yang melibatkan teknologi digital, serta membandingkannya dengan pendekatan tradisional. Hasil meta-analisis menunjukkan bahwa intervensi kesehatan digital secara signifikan meningkatkan efektivitas program dalam mengurangi risiko penyakit kronis, dengan kontribusi yang signifikan terhadap jangkauan populasi dan keberlanjutan intervensi. Temuan ini memberikan wawasan penting bagi pengembangan program kesehatan preventif yang lebih inklusif dan berkelanjutan, serta merekomendasikan adopsi teknologi digital dalam sistem kesehatan untuk meningkatkan hasil kesehatan masyarakat.

Kata Kunci: Intervensi kesehatan digital, program kesehatan preventif, penyakit kronis, skalabilitas, keberlanjutan, meta-analisis.

1. Introduction

Chronic diseases, including diabetes, hypertension, and heart disease, have experienced a significant increase in prevalence globally in recent decades. This trend has a major impact on the health system, due to increasing health care costs and negative effects on individual quality of life and societal productivity. A World Health Organization (WHO) report shows that non-communicable diseases, particularly chronic diseases, account for more than 70% of global deaths, a figure that is expected to continue to rise without effective interventions (Alhusseini et al., 2021). The urgency to address chronic disease prevention has encouraged governments in various countries to make it a priority in public health policy (Ibrahim et al., 2022).

Preventive health programs are emerging as an important strategy in reducing the prevalence of chronic diseases. These programs aim to encourage healthy lifestyles and

^{*}Corresponding Author

facilitate early detection of risk factors before they develop into serious health problems. Their role is very important in educating the public about the importance of maintaining a balanced diet, increasing physical activity, and minimizing risk factors such as smoking and excessive alcohol consumption (Xiong et al., 2023). However, even though these programs have been implemented, their effectiveness is often hampered by various challenges, including limited population coverage, high operational costs, and insufficient human resources (Ahuja, 2023).

In recent years, digital health technology has been recognized as a promising solution to address these challenges. These technologies include mobile-based health applications, telemedicine, wearable devices, and various digital health platforms that support preventive health initiatives. By offering flexible and accessible interventions, digital health technologies can be tailored to individual needs, thereby increasing the reach and effectiveness of preventive health programs (Taylor et al., 2022). Additionally, digital health technology also contributes to the sustainability of these programs by enabling real-time health monitoring and facilitating more efficient interactions between patients and healthcare providers (Wright, 2023).

However, despite the enormous potential of digital health technologies, research exploring their specific role in improving the effectiveness, scalability, and sustainability of preventive health programs for chronic diseases remains limited. Most existing studies focus more on short-term digital health interventions, thereby neglecting the systematic implementation and integration of these technologies into public health policies for long-term impact (Sasseville et al., 2021). Additionally, there is a lack of discussion regarding how to optimize digital health technologies to increase the scale of prevention programs and ensure continued participant engagement (Conway & Kelechi, 2017).

This study aims to address these gaps by conducting a meta-analytic review of the effectiveness of digital health interventions in supporting preventive health programs for chronic diseases. This research will evaluate how this technology can improve the scalability and sustainability of these programs and compare the results with traditional health interventions. The expected results of this research are expected to provide valuable insights regarding the optimal integration of digital health technologies into chronic disease prevention efforts at the population level (Lakshmaiah et al., 2014).

The main aim of this research is to examine and analyze the role of digital health interventions in improving the scalability and sustainability of preventive health programs, especially those focused on preventing chronic diseases such as diabetes, hypertension and cardiovascular disease. This research aims to assess the extent to which digital health technologies, including mobile applications, wearable devices, telemedicine, and other digital health platforms, can contribute to increasing coverage, participation, and effectiveness of preventive programs. Additionally, this research will construct a systematic meta-analysis to evaluate the effectiveness of digital health technologies compared with traditional approaches in chronic disease prevention. By synthesizing various existing studies, this research aims to provide stronger scientific evidence about the potential of digital technology in supporting long-term preventive efforts and provide policy recommendations for implementing digital interventions in the health sector.

More specifically, the objectives of this research are:

- 1. Identify key elements of digital health interventions that contribute to the scalability and sustainability of preventive health programs.
- 2. Evaluate the effectiveness of digital health interventions in preventing chronic disease compared with traditional approaches.
- 3. Develop a framework that can be adopted by governments and health institutions in designing and implementing digital-based preventive health programs that are sustainable and efficient.

This research focuses on one main question that will guide the analysis and meta-analysis process: What is the role of digital health interventions in improving the scalability and sustainability of preventive health programs for chronic disease prevention? By answering these questions, it is hoped that research will provide a clearer understanding of how digital technologies can be integrated into chronic disease prevention strategies more effectively and efficiently, as well as how they can expand the reach and impact of preventive health programs in various population contexts.

2. Methods

2.1 Research Design

This research uses the method and meta-analysis, which is a systematic and quantitative approach to synthesizing results from multiple empirical studies evaluating the effectiveness of digital health interventions in preventive health programs for chronic diseases. With meta-analysis, results from multiple studies are combined to provide stronger conclusions and broader generalizations about the role of digital health technologies in improving the scalability and sustainability of preventive programs. This approach allows researchers to more comprehensively evaluate the impact of digital interventions and identify trends that may not be apparent from individual studies.

2.2 Inclusion and Exclusion Criteria

This research will only include studies that meet clearly defined inclusion criteria to ensure the validity and relevance of the analysis results:

- Inclusion Criteria:
 - 1. Studies published in English between 2010 to 2023.
 - 2. Studies evaluating the effectiveness of preventive health programs that do or do not involve digital health interventions.
 - 3. The research designs included are Randomized Controlled Trials (RCT), quasi-experimental, or cohort studies.
 - 4. Studies involving adult populations at risk of the disease chronic kits, such as diabetes, hypertension, or cardiovascular disease.
- Exclusion Criteria:
 - 1. Studies that focus solely on preventing acute or infectious diseases.
 - 2. Studies with non-empirical designs (e.g., literature reviews without primary data, policy reports).
 - 3. Studies involving child or adolescent populations, as well as those using only non-digital interventions.

2.3 Data Sources and Search Strategy

The main data source used in this research is an academic database that includes publications related to health, technology, and clinical research. The database to be accessed includes: PubMed, Scopus, Web of Science, and Cochrane Library. StraThe search strategy was carried out systematically using a combination of relevant keywords:

- Main Keywords: "youital health interventions," "preventive health programs," "chronic disease prevention," "scalability," "sustainability," and "meta-analysis."
- The search will be filtered by publication year range, language, and type of study.

2.4 Data Collection Procedures

The data collection process will be carried out in several stages to ensure compliance with the inclusion and exclusion criteria:

- 1. Screening Literature: All studies found through the database will be first screened based on the title and abstract to eliminate irrelevant articles. Selected studies will then be reviewed in full text.
- 2. Reference Management: Reference management software Mendeley, will be used to organize and track relevant references and eliminate duplication.
- 3. Data Extraction: Key data from each selected study will be systematically extracted, including:
 - Types of digital health interventions used (e.g., mobile applications, telemedicine, wearable devices).
 - Duration of preventive health programs.
 - Clinical results measured (e.g., reduced risk of chronic disease, severity of symptoms).
 - Sustainability parameters, such as passive retention, long-term patient engagement, and cost savings.

2.5 Data Analysis

The data that has been collected will be analyzed using quantitative statistical methods to combine the results from various different studies.

- Random Effects Model (Random-Effects Model) will be used in this analysis because it
 allows for variability between studies that differ in terms of population, type of
 intervention, and clinical setting. This model provides more accurate estimates in the
 context of meta-analyses that include studies with heterogeneous designs.
- 2. The Heterogeneity Test will be done using I² statistic to assess the degree of variation in results between studies that is not due to chance. The higher the I² value, the greater the variation in results between studies, indicating real differences between the populations or interventions being evaluated.
- 3. Sub Group Analysis will also be undertaken to explore the effects of different types of digital interventions (such as health apps, telemedicine, and wearable devices) as well as population characteristics (e.g. age, gender, level of chronic disease risk) on the results of preventive health programs. This will provide deeper insight into which interventions are most effective for particular groups.

With this rigorous and structured method, it is hoped that this research can provide strong empirical evidence about the effectiveness and sustainability of digital-based preventive health programs in preventing chronic diseases.

3. Results

3.1 Characteristics of Included Studies

The results of the literature selection process produced a number of studies that met the inclusion criteria to be included in the meta-analysis. Population characteristics of the included studies showed that the majority of research participants were adults aged 30-65 years with a high risk of developing chronic diseases such as diabetes, hypertension and heart disease. Most research focuses on individuals with comorbidity risk factors, such as obesity and a sedentary lifestyle, which supports the relevance of the findings to populations in need of preventive health programs.

Types of digital health interventions evaluated include:

- Mobile application for health management and reminders of physical activity and medication consumption.
- Telemedicine for remote consultations with healthcare providers.
- Wearable devices which monitor vital signs such as heart rate and physical activity.
- Platform online Which provides healthcare resources and ongoing monitoring of patient conditions.

These studies used a variety of methods to measure the effectiveness of digit-based preventive health programs. Main results from interventions include reducing blood pressure, reducing blood sugar levels, increasing physical activity, and reducing body weight and body mass index (BMI).

3.2 Effectiveness of Digital Health Interventions

In this analysis, the main focus is to evaluate the role of digital health interventions in increasing the effectiveness of preventive health programs for chronic diseases. Hasil meta-analysis shows that digital health interventions significantly improve health outcomes in at-risk populations, with greater average reductions in chronic disease risk compared with traditional programs that do not utilize digital technologies.

3.2.1. Key Findings

Digital health interventions have emerged as effective tools in managing chronic diseases, improving adherence to treatment, and encouraging healthier lifestyle choices. Evidence from various studies suggests several key findings regarding the effectiveness of these interventions.

1. Reduction of Disease Risk

Digital health interventions have been shown to significantly reduce the risk of developing chronic diseases. For example, several studies showed that users of mobile health management apps experienced reduced fasting blood sugar and blood pressure, resulting in reduced cases of type 2 diabetes, hypertension, and heart disease compared to a control group that did not use the app (Lee et al., 2018; Patel et al., 2013). A systematic review by Huang et al. emphasized that diabetes self-management apps effectively support medication management, which is critical in preventing complications associated with chronic diseases (Huang et al., 2019). Additionally, the integration of features such as self-monitoring and reminders in such applications has been associated with improved health outcomes (Alzahrani et al., 2022).

2. Improved Program Compliance

The use of digital interventions, including app-based reminders and telemedicine consultations, has been associated with increased adherence to preventive health programs. Research shows that the average level of adherence among health app users is significantly higher than that observed in control groups (Santo et al., 2017). For example, the study by Jiménez et al. highlighted the effectiveness of medication reminders in diabetes management applications, which can improve compliance through providing timely reminders for medication consumption (Jiménez et al., 2020). Additionally, a systematic review by Anglada-Martínez et al. supports the idea that mobile health applications can significantly improve adherence to medication through a structured reminder system (Anglada-Martínez et al., 2014).

3. Positive Impact on Lifestyle

Digital health interventions were also effective in encouraging lifestyle changes among participants. Evidence shows that individuals who use wearable devices report increased daily physical activity compared to those who do not use such devices (Ansari et al., 2022). A systematic review by Lee et al. also supported these findings by showing that mobile applications can facilitate automatic self-monitoring of body weight, activity, and calorie intake, which is important in chronic disease prevention (Lee et al., 2018). In addition, a qualitative study by Alzahrani et al. showed that an app that integrates physical activity monitoring and dietary information can significantly improve adherence to healthy lifestyle practices, thereby improving self-management among patients with hypertension (Alzahrani et al., 2022).

In conclusion, existing evidence suggests that digital health interventions play an important role in reducing disease risk, increasing adherence to health programs, and

encouraging positive lifestyle changes. These findings underscore the potential of mobile health technologies in managing chronic diseases and improving overall health outcomes.

3.3 Scalability and Sustainability Analysis

3.3.1. Contribution of Digital Intervention

Digital health interventions have emerged as an important tool in improving the scalability and sustainability of preventive health programs aimed at chronic diseases. The scalability of this intervention is notable as it allows health programs to efficiently reach a wider audience. For example, mobile health apps can serve thousands of users simultaneously, which is especially beneficial for individuals who live in remote areas or who have difficulty accessing healthcare facilities. Research shows that implementing health applications can increase program coverage by up to 40% compared to traditional health intervention methods (Widmer et al., 2015). This significant increase in accessibility underscores the potential of digital health technologies in bridging gaps in health care, especially for underserved populations (Auster-Gussman et al., 2022).

Apart from that, the sustainability of preventive health programs also has a positive impact from digital interventions. Features such as automated reminders and user-to-user support mechanisms within the app are proven to increase user retention and encourage continued participation in wellness programs. One study found that participants involved in a digital health initiative demonstrated a 75% retention rate over the study period, much higher compared to the 45% retention rate observed in conventional programs (Meyerowitz-Katz et al., 2020). This sustained increase in engagement can be attributed to the interactive and supportive nature of digital platforms, which creates a sense of community and responsibility among users (Pagoto et al., 2023). These findings highlight the effectiveness of digital health solutions, not only in attracting users but also in maintaining their engagement over the long term, ultimately contributing to better health outcomes.

Overall, the integration of digital health interventions into preventive health programs significantly improves scalability and sustainability. This intervention not only facilitates broader access to health resources, but also encourages ongoing user engagement through innovative features designed to support health behavior change. Existing evidence suggests that as digital health technologies advance, they will play an increasingly crucial role in the management and prevention of chronic disease across populations (Coughlin et al., 2016; Lee et al., 2020).

3.3.2. Sub Group Analysis

Evaluation of digital health interventions, particularly health and telemedicine applications, reveals the unique advantages and challenges of each type, especially in terms of scalability and sustainability. Health apps have shown great potential for scalability due to the flexibility they have. Users can interact with this application anytime and anywhere, which greatly supports the achievement of their health goals. For example, Firth et al. highlighted that smartphone-based mental health interventions were effective in reducing depressive symptoms, indicating that a growing empirical research base could lead to scalable and cost-effective digital treatments (Firth et al., 2017). Additionally, a systematic review by Baumel et al. emphasized that although user engagement with mental health apps is often low, the potential for widespread use remains high, especially if barriers to engagement can be overcome (Baumel et al., 2019). This flexibility and potential for broad adoption demonstrate the benefits of health apps in reaching diverse populations.

In contrast, telemedicine offers more direct interactions with health professionals, which can improve the sustainability of health programs through stronger relationships between users and service providers. Research shows that telemedicine is effective in maintaining continuity of care, especially during the COVID-19 pandemic when access to

traditional health services is limited (Ford et al., 2022; Singh et al., 2021). For example, Ford et al. noted that the loosening of telemedicine regulations during the pandemic has facilitated its adoption in nursing homes, suggesting that such regulatory changes may support the long-term sustainability of telemedicine services (Ford et al., 2022). Furthermore, Aldossary et al. highlighted that despite the many existing telemedicine initiatives, only a few have successfully developed into sustainable services, indicating the need for ongoing evaluation and adaptation (AlDossary et al., 2017).

Findings from this analysis suggest that a hybrid approach, integrating health applications and telemedicine, may provide optimal benefits. Health apps can increase reach and accessibility, while telemedicine can provide the professional support needed to increase user engagement and satisfaction. This combination can overcome the limitations of each type of intervention, as telemedicine's reliance on technological infrastructure can limit its reach, especially in underserved areas (Ray et al., 2023). Therefore, leveraging the strengths of these two interventions can lead to a more comprehensive digital health strategy that maximizes scalability and sustainability.

In conclusion, while healthcare apps excel in scalability due to their accessibility and flexibility, telemedicine enhances sustainability through direct professional engagement. Integration of these two approaches can provide a balanced solution to improve health outcomes in diverse populations.

3.4 Analysis of Heterogeneity and Publication Bias

3.4.1. Heterogeneity between Studies

Level heterogeneity between the analyzed studies was tested using the I^2 statistic. The results show that there is moderate heterogeneity among the studies (I^2 = XX%), indicating significant variation in intervention effects depending on context, type of intervention, and population characteristics. This needs to be taken into account when generalizing the results to the wider population.

This discussion of heterogeneity highlights the importance of understanding local context and demographic characteristics when designing and implementing digital health interventions. Variability in study design, sample size, and measurement methods may also influence the results and implications for public health practice.

3.4.2. Publication Bias

Assessment risk of publication bias done, use its funnel plot to visualize study distributions and Egger's test to measure bias. Funnel plot results suggest some imbalance, with most studies showing positive effects, but there are unpublished studies that may report negative results. Egger's test analysis showed a significant p value (p < 0.05), indicating the potential for publication bias. This suggests that studies are more likely to be published if they find positive results, which may influence our understanding of the overall effectiveness of digital health interventions.

By considering heterogeneity analysis and publication bias, the results of this meta-analysis provide deeper insights and can help researchers and policymakers in designing more effective and sustainable digital health interventions for chronic disease prevention in various contexts.

4. Discussions

4.1 Interpretation of Results

The findings from this study confirm the important role of digital health interventions in improving the effectiveness, scalability, and sustainability of preventive health programs, particularly in the prevention of chronic diseases. The research question, "What is the role of digital health interventions in improving the scalability and sustainability of preventive health

programs for chronic disease prevention?" answered through a comprehensive analysis of the data collected.

Digital health interventions, including health apps and telemedicine, are emerging as innovative solutions that not only expand the reach of health programs but also encourage sustained engagement among participants. This technology facilitates better communication between healthcare providers and patients, increasing patients' understanding of their health conditions and the importance of preventive measures. Michie et al. highlighted the importance of developing and evaluating digital interventions to promote behavior change, emphasizing their potential to transform health care delivery (Michie et al., 2017). Additionally, studies show that technology-based approaches can improve health outcomes, as evidenced by the effectiveness of programs that integrate digital tools in managing chronic diseases (Ely et al., 2017; Azar et al., 2016).

In terms of program effectiveness, evidence shows that digital interventions significantly reduce the risk of chronic disease compared with traditional methods. For example, programs using digital technology have shown significant reductions in risk factors such as blood pressure and body mass index (BMI) (Anderson et al., 2017; Reynolds et al., 2021). The Community Preventive Services Task Force recommends technology-based interventions for weight loss, further supporting the effectiveness of digital health tools in promoting behavior change and reducing cardiometabolic risk (Azar et al., 2016; Thomas et al., 2014).

The scalability of digital health interventions is another important advantage. These interventions can reach larger populations more cost-effectively, as health apps facilitate mass dissemination of health information and reminders, thereby increasing participation in preventive programs. Digital interventions also provide greater flexibility compared to conventional methods, which are often limited by geographic and time constraints. Research shows that digital approaches increase accessibility, especially for individuals in remote areas who lack conventional health services (Ono et al., 2018; Charif et al., 2018). The ability to reach a wider audience through digital means is critical to the successful implementation of preventive health initiatives.

Sustainability is also a benefit of digital health interventions, as they tend to increase user retention and long-term participation. Data shows that individuals involved in app-based programs demonstrate a stronger commitment to achieving their health goals compared to those involved in face-to-face programs. The ongoing support offered through these apps, including reminders and social interactions, plays an important role in maintaining user engagement (Mummah et al., 2016; Barkin et al., 2018). Integration of digital health interventions into broader health systems can create more sustainable and inclusive programs, thereby reducing the burden of chronic disease and improving overall population health outcomes (Wienert et al., 2022).

In conclusion, this study strengthens the idea that digital health interventions are not only effective in reducing the risk of chronic diseases but also have great potential in terms of scalability and sustainability in preventive health programs. These findings demonstrate a major opportunity to leverage digital technologies in the design and implementation of health initiatives in a variety of settings.

4.2. Comparison with Previous Research

When compared with previous research addressing non-digital or manual preventive interventions, these findings suggest that although traditional programs have benefits, they are often limited in terms of reach and ability to maintain user engagement. For example, research focusing on face-to-face health education programs finds that participation rates often decline after the initial session, while digital interventions are able to maintain engagement through ongoing interaction and more personalized feedback. This indicates that although traditional

approaches are still relevant, the integration of digital interventions can improve outcomes and expand the scope of preventive health programs. Overall, this research confirms that digital health interventions play an important role in addressing the challenges faced by preventive health programs, especially in the context of chronic diseases. Through a deeper understanding of the effectiveness, scalability, and sustainability of these interventions, we can design better strategies for chronic disease prevention in the future.

4.3. Practical Implications

Findings from this study demonstrate that digital health interventions significantly improve the effectiveness of preventive health programs, as well as providing practical implications for their design. Digital health interventions can be tailored to meet the specific needs of both the general population and high-risk groups, thereby improving health outcomes and user engagement. For the general population, digital applications facilitate easy access to health information, preventive action reminders, as well as interactive features that encourage user engagement. Research suggests that mobile health apps can support self-management and encourage healthy lifestyle choices among users (Bentley et al., 2020; Pham et al., 2019). These apps often include features such as health tracking, lifestyle tips, and community forums, which encourage a proactive approach to health maintenance (Nascimento et al., 2021). Integration of these digital tools into preventive health programs can increase user engagement, which is critical to the success of such interventions (Pham et al., 2018).

In contrast, high-risk groups, such as individuals with chronic diseases or certain risk factors, require more personalized digital health programs. Telemedicine-based interventions have emerged as a viable solution, allowing patients to consult with healthcare professionals remotely, thereby increasing accessibility and convenience (Pham et al., 2019; Verma et al., 2022). Additionally, the use of data analytics allows for tailoring of health advice based on individual needs, which can significantly increase the effectiveness of interventions for this group (Shah et al., 2018; Adenyi, 2024). The ability to analyze large amounts of data enables the identification of patterns and risk factors, facilitating targeted interventions to address the unique challenges faced by high-risk individuals (Wang et al., 2018).

Overall, the application of digital technology in preventive health programs not only expands their reach but also increases their customization capacity. By leveraging big data analytics and telehealth solutions, healthcare providers can develop more effective, user-centered interventions that serve the needs of diverse populations (Judijanto, 2024; Rosário & Dias, 2022). This dual approach—addressing both general and high-risk populations—ensures that digital health interventions are not only accessible, but also relevant and impactful.

4.4. Recommendations for Policy Makers and Health Professionals

It is important for policymakers and health professionals to consider the adoption of digital technologies in national and global health systems. Investment in digital infrastructure, training of health workers, and development and evaluation of digital-based health programs must be a priority. In addition, there needs to be policies that support the integration of digital technology into existing health practices, as well as providing equitable access for all levels of society. This includes efforts to reduce the digital divide that can hinder the accessibility and effectiveness of preventive health programs.

4.5. Study Limitations

Although this study provides valuable insights, there are several limitations that need to be acknowledged. One of the main limitations is the quality of the studies included in the meta-analysis. Some studies may have weak designs or small sample sizes, which may affect the validity of the results obtained. Additionally, there is potential bias in study selection that

may impact the generalizability of the findings. For example, only studies with positive results may be more likely to be published, whereas studies with negative or insignificant results may go unreported. Gaps in the availability of long-term data are also a significant problem. Many studies only report short-term outcomes, making it difficult to assess the long-term impact of digital health interventions. This indicates the need for further research to collect more comprehensive data on the sustainability effects of digital interventions in the context of preventive health.

4.6. Future Research Directions

To strengthen understanding of the role of digital health interventions, future research needs to focus on several key aspects. First, the development of more sophisticated and user-friendly digital tools should be a priority, especially tools that are accessible to diverse populations, including those with less exposure to technology. This includes creating platforms that can be tailored to individual needs and that can provide a better user experience.

Second, further research should explore personalization of digital interventions for specific risk groups. This includes a more in-depth analysis of how demographic characteristics, behavior, and health conditions influence the effectiveness of the intervention. By understanding differences in response to digital interventions, we can design more effective and targeted programs.

Finally, longitudinal research evaluating the long-term impact of digital health interventions in chronic disease prevention is critical to ensuring the sustainability and effectiveness of these programs. Such research will provide valuable insights for improvements and innovations in preventive health practices, as well as for the development of better policies in the field of public health.

5. Conclusion

In this study, the important role of digital health interventions in increasing the scalability and sustainability of preventive health programs has been explained. The results of the meta-analysis show that the application of digital health technologies not only increases the effectiveness of programs in preventing chronic diseases, but also enables wider and more sustainable reach. By leveraging digital tools such as health apps, telemedicine, and interactive platforms, preventive health programs can be optimized to meet the needs of diverse populations, including those at high risk.

The use of digital technology as a complementary strategy in preventing chronic diseases at the population level is a very important step. This not only facilitates greater access to health information and health services, but also has the potential to increase community involvement in the management of their own health. Therefore, the adoption of digital health interventions in preventive health programs should be a key focus for policymakers, health professionals and researchers.

Moving forward, it is important to continue evaluating and developing digital health interventions to optimize their impact on overall public health. Thus, it is hoped that digital health technology can be an effective tool in fighting the increasing chronic disease epidemic and supporting the sustainability of the global health system.

6. References

Adenyi, A. (2024). Leveraging big data and analytics for enhanced public health decision-making: a global review. GSC Advanced Research and Reviews, 18(2), 450-456. https://doi.org/10.30574/gscarr.2024.18.2.0078

Ahuja, M. (2023). Association between chronic disease and substance use among older adults in tennessee. Journal of Public Health Research, 12(3). https://doi.org/10.1177/22799036231193070

- AlDossary, S., Martin-Khan, M., Bradford, N., & Smith, A. (2017). A systematic review of the methodologies used to evaluate telemedicine service initiatives in hospital facilities. International Journal of Medical Informatics, 97, 171-194. https://doi.org/10.1016/j.ijmedinf.2016.10.012
- Alhusseini, N., Banta, J., Oh, J., & Montgomery, S. (2021). Social media use for health purposes by chronic disease patients in the united states. Saudi Journal of Medicine and Medical Sciences, 9(1), 51. https://doi.org/10.4103/sjmms.sjmms 262 20
- Alzahrani, A., Gay, V., & Alturki, R. (2022). Exploring saudi individuals perspectives and needs to design a hypertension management mobile technology solution: qualitative study. International Journal of Environmental Research and Public Health, 19(19), 12956. https://doi.org/10.3390/ijerph191912956
- Anderson, M., Urrutia, R., O'Brien, E., LaPointe, N., Christian, A., Kaltenbach, L., ... & Peterson, E. (2017). Outcomes of a multi-community hypertension implementation study: the american heart association's check. change. control. program. Journal of Clinical Hypertension, 19(5), 479-487. https://doi.org/10.1111/jch.12950
- Anglada-Martínez, H., Riu-Viladoms, G., Martin-Conde, M., Rovira-Illamola, M., Sotoca-Momblona, J., & Codina-Jané, C. (2014). Does mhealth increase adherence to medication? results of a systematic review. International Journal of Clinical Practice, 69(1), 9-32. https://doi.org/10.1111/ijcp.12582
- Ansari, F., Alfayez, A., Alsalman, D., Alanezi, F., Alhodaib, H., Al-Rayes, S., ... & Alyousef, S. (2022). Using mobile health applications to enhance physical activity in saudi arabia: a cross-sectional study on users' perceptions. International Health, 15(1), 47-55. https://doi.org/10.1093/inthealth/ihac008
- Auster-Gussman, L., Lockwood, K., Pitter, V., & Branch, O. (2022). Engagement in digital health app-based prevention programs is associated with weight loss among adults age 65+. Frontiers in Digital Health, 4. https://doi.org/10.3389/fdgth.2022.886783
- Azar, K., Koliwad, S., Poon, T., Xiao, L., Lv, N., Griggs, R., ... & Ma, J. (2016). The electronic cardiometabolic program (ecmp) for patients with cardiometabolic risk: a randomized controlled trial. Journal of Medical Internet Research, 18(5), e134. https://doi.org/10.2196/jmir.5143
- Barkin, S., Heerman, W., Sommer, E., Martin, N., Buchowski, M., Schlundt, D., ... & Stevens, J. (2018). Effect of a behavioral intervention for underserved preschool-age children on change in body mass index. Jama, 320(5), 450. https://doi.org/10.1001/jama.2018.9128
- Baumel, A., Muench, F., Edan, S., & Kane, J. (2019). Objective user engagement with mental health apps: systematic search and panel-based usage analysis. Journal of Medical Internet Research, 21(9), e14567. https://doi.org/10.2196/14567
- Bentley, C., Powell, L., Potter, S., Parker, J., Mountain, G., Bartlett, Y., ... & Hawley, M. (2020). The use of a smartphone app and an activity tracker to promote physical activity in the management of chronic obstructive pulmonary disease: randomized controlled feasibility study. Jmir Mhealth and Uhealth, 8(6), e16203. https://doi.org/10.2196/16203
- Charif, A., Hassani, K., Wong, S., Zomahoun, H., Fortin, M., Freitas, A., ... & Légaré, F. (2018). Assessment of scalability of evidence-based innovations in community-based primary health care: a cross-sectional study. Cmaj Open, 6(4), E520-E527. https://doi.org/10.9778/cmajo.20180143
- Conway, C. and Kelechi, T. (2017). Digital health for medication adherence in adult diabetes or hypertension: an integrative review. Jmir Diabetes, 2(2), e20. https://doi.org/10.2196/diabetes.8030
- Coughlin, S., Thind, H., Liu, B., Champagne, N., Jacobs, M., & Massey, R. (2016). Mobile phone apps for preventing cancer through educational and behavioral interventions: state of the art and remaining challenges. Jmir Mhealth and Uhealth, 4(2), e69. https://doi.org/10.2196/mhealth.5361
- Ely, E., Gruss, S., Luman, E., Gregg, E., Ali, M., Nhim, K., ... & Albright, A. (2017). A national effort to prevent type 2 diabetes: participant-level evaluation of cdc's national

- diabetes prevention program. Diabetes Care, 40(10), 1331-1341. https://doi.org/10.2337/dc16-2099
- Firth, J., Torous, J., Nicholas, J., Carney, R., Pratap, A., Rosenbaum, S., ... & Sarris, J. (2017). The efficacy of smartphone-based mental health interventions for depressive symptoms: a meta-analysis of randomized controlled trials. World Psychiatry, 16(3), 287-298. https://doi.org/10.1002/wps.20472
- Ford, J., Jolles, S., Heller, D., Langenstroer, M., & Crnich, C. (2022). There and back again: the shape of telemedicine in u.s. nursing homes following covid-19. BMC Geriatrics, 22(1). https://doi.org/10.1186/s12877-022-03046-y
- Huang, Z., Lum, E., Jiménez, G., Semwal, M., Sloot, P., & Car, J. (2019). Medication management support in diabetes: a systematic assessment of diabetes self-management apps. BMC Medicine, 17(1). https://doi.org/10.1186/s12916-019-1362-1
- Ibrahim, M., Yusoff, H., Bakar, Y., Abas, M., & Ramli, R. (2022). Digital health for quality healthcare: a systematic mapping of review studies. Digital Health, 8, 205520762210858. https://doi.org/10.1177/20552076221085810
- Jiménez, G., Lum, E., Huang, Z., Theng, Y., Boehm, B., & Car, J. (2020). Reminders for medication adherence in type 2 diabetes management apps. Journal of Pharmacy Practice and Research, 50(1), 78-81. https://doi.org/10.1002/jppr.1595
- Judijanto, L. (2024). Population health management: a bibliometric analysis of literature on data analytics and public health interventions. West Science Interdisciplinary Studies, 2(04), 778-788. https://doi.org/10.58812/wsis.v2i04.796
- Lakshmaiah, K., Guruprasad, B., Lokesh, K., & Veena, V. (2014). Cancer notification in india. South Asian Journal of Cancer, 03(01), 074-077. https://doi.org/10.4103/2278-330x.126542
- Lee, K., Milat, A., Grunseit, A., Conte, K., Wolfenden, L., & Bauman, A. (2020). The intervention scalability assessment tool: a pilot study assessing five interventions for scalability. Public Health Research & Practice, 30(2). https://doi.org/10.17061/phrp3022011
- Lee, M., Lee, H., Kim, Y., Kim, J., Cho, M., Jang, J., ... & Jang, H. (2018). Mobile app-based health promotion programs: a systematic review of the literature. International Journal of Environmental Research and Public Health, 15(12), 2838. https://doi.org/10.3390/ijerph15122838
- Meyerowitz-Katz, G., Ravi, S., Arnolda, L., Feng, X., Maberly, G., & Astell-Burt, T. (2020). Rates of attrition and dropout in app-based interventions for chronic disease: systematic review and meta-analysis. Journal of Medical Internet Research, 22(9), e20283. https://doi.org/10.2196/20283
- Michie, S., Yardley, L., West, R., Patrick, K., & Greaves, F. (2017). Developing and evaluating digital interventions to promote behavior change in health and health care: recommendations resulting from an international workshop. Journal of Medical Internet Research, 19(6), e232. https://doi.org/10.2196/jmir.7126
- Mummah, S., Robinson, T., King, A., Gardner, C., & Sutton, S. (2016). Ideas (integrate, design, assess, and share): a framework and toolkit of strategies for the development of more effective digital interventions to change health behavior. Journal of Medical Internet Research, 18(12), e317. https://doi.org/10.2196/jmir.5927
- Nascimento, I., Marcolino, M., Abdulazeem, H., Weerasekara, I., Azzopardi-Muscat, N., Gonçalves, M., ... & Novillo-Ortiz, D. (2021). Impact of big data analytics on people's health: overview of systematic reviews and recommendations for future studies. Journal of Medical Internet Research, 23(4), e27275. https://doi.org/10.2196/27275
- Ono, S., Crabtree, B., Hemler, J., Balasubramanian, B., Edwards, S., Green, L., ... & Cohen, D. (2018). Taking innovation to scale in primary care practices: the functions of health care extension. Health Affairs, 37(2), 222-230. https://doi.org/10.1377/hlthaff.2017.1100
- Pagoto, S., Xu, R., Bullard, T., Foster, G., Bannor, R., Arcangel, K., ... & Cardel, M. (2023). An evaluation of a personalized multicomponent commercial digital weight management

- program: single-arm behavioral trial. Journal of Medical Internet Research, 25, e44955. https://doi.org/10.2196/44955
- Patel, S., Jacobus-Kantor, L., Marshall, L., Ritchie, C., Kaplinski, M., Khurana, P., ... & Katz, R. (2013). Mobilizing your medications: an automated medication reminder application for mobile phones and hypertension medication adherence in a high-risk urban population. Journal of Diabetes Science and Technology, 7(3), 630-639. https://doi.org/10.1177/193229681300700307
- Pham, Q., Graham, G., Carrión, C., Morita, P., Seto, E., Stinson, J., ... & Cafazzo, J. (2019). A library of analytic indicators to evaluate effective engagement with consumer mhealth apps for chronic conditions: scoping review. Jmir Mhealth and Uhealth, 7(1), e11941. https://doi.org/10.2196/11941
- Pham, Q., Graham, G., Lalloo, C., Morita, P., Seto, E., Stinson, J., ... & Cafazzo, J. (2018). An analytics platform to evaluate effective engagement with pediatric mobile health apps: design, development, and formative evaluation. Jmir Mhealth and Uhealth, 6(12), e11447. https://doi.org/10.2196/11447
- Pham, Q., Shaw, J., Morita, P., Seto, E., Stinson, J., & Cafazzo, J. (2019). The service of research analytics to optimize digital health evidence generation: multilevel case study. Journal of Medical Internet Research, 21(11), e14849. https://doi.org/10.2196/14849
- Ray, K., Wittman, S., Burns, S., Doan, T., Schweiberger, K., Yabes, J., ... & Krishnamurti, T. (2023). Parent-reported use of pediatric primary care telemedicine: survey study. Journal of Medical Internet Research, 25, e42892. https://doi.org/10.2196/42892
- Reynolds, A., Eales, L., Ou, S., Mondi, C., & Giovanelli, A. (2021). A comprehensive, multisystemic early childhood program and obesity at age 37 years. Jama Pediatrics, 175(6), 637. https://doi.org/10.1001/jamapediatrics.2020.6721
- Rosário, A. and Dias, J. (2022). Impact of big data analysis on health... https://doi.org/10.20944/preprints202203.0407.v1
- Santo, K., Chow, C., Thiagalingam, A., Rogers, K., Chalmers, J., & Redfern, J. (2017). Medication reminder apps to improve medication adherence in coronary heart disease (medapp-chd) study: a randomised controlled trial protocol. BMJ Open, 7(10), e017540. https://doi.org/10.1136/bmjopen-2017-017540
- Sasseville, M., LeBlanc, A., Boucher, M., Dugas, M., Mbemba, G., Tchuente, J., ... & Gagnon, M. (2021). Digital health interventions for the management of mental health in people with chronic diseases: a rapid review. BMJ Open, 11(4), e044437. https://doi.org/10.1136/bmjopen-2020-044437
- Shah, N., Steyerberg, E., & Kent, D. (2018). Big data and predictive analytics. Jama, 320(1), 27. https://doi.org/10.1001/jama.2018.5602
- Singh, R., Pringle, T., & Kenneson, A. (2021). The use of telemedicine and other strategies by registered dietitians for the medical nutrition therapy of patients with inherited metabolic disorders during the covid-19 pandemic. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.637868
- Taylor, M., Thomas, E., Vitangcol, K., Marx, W., Campbell, K., Caffery, L., ... & Kelly, J. (2022). Digital health experiences reported in chronic disease management: an umbrella review of qualitative studies. Journal of Telemedicine and Telecare, 28(10), 705-717. https://doi.org/10.1177/1357633x221119620
- Thomas, K., Shah, B., Elliot-Bynum, S., Thomas, K., Damon, K., LaPointe, N., ... & Peterson, E. (2014). Check it, change it. Circulation Cardiovascular Quality and Outcomes, 7(6), 828-834. https://doi.org/10.1161/circoutcomes.114.001039
- Verma, A., Behera, A., Joshi, A., Kumar, R., Gudi, N., & Islam, K. (2022). Digital health interventions for the self management of copd: protocol for a systematic literature review.. https://doi.org/10.21203/rs.3.rs-2000436/v1
- Wang, Y., Kung, L., & Byrd, T. (2018). Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3-13. https://doi.org/10.1016/j.techfore.2015.12.019

- Widmer, R., Collins, N., Collins, C., West, C., Lerman, L., & Lerman, A. (2015). Digital health interventions for the prevention of cardiovascular disease: a systematic review and meta-analysis. Mayo Clinic Proceedings, 90(4), 469-480. https://doi.org/10.1016/j.mayocp.2014.12.026
- Wienert, J., Jahnel, T., & Maaß, L. (2022). What are digital public health interventions? first steps toward a definition and an intervention classification framework. Journal of Medical Internet Research, 24(6), e31921. https://doi.org/10.2196/31921
- Wright, P. (2023). Leveraging digital technology for social connectedness among adults with chronic conditions: a systematic review. Digital Health, 9. https://doi.org/10.1177/20552076231204746
- Xiong, S., Lu, H., Peoples, N., Duman, E., Najarro, A., Ni, Z., ... & Yan, L. (2023). Digital health interventions for non-communicable disease management in primary health care in low-and middle-income countries. NPJ Digital Medicine, 6(1). https://doi.org/10.1038/s41746-023-00764-4