Management Studies and Business Journal (PRODUCTIVITY)

Vol 2 (1) 2025 : 1845-1858

GREEN LOGISTICS STRATEGIES IN E-COMMERCE BALANCING SUSTAINABILITY AND COST EFFICIENCY

STRATEGI LOGISTIK HIJAU DALAM E-COMMERCE MENYEIMBANGKAN KEBERLANJUTAN DAN EFISIENSI BIAYA

Nurul Aziz Pratiwi

Universitas 'Aisyiyah Bandung *nurulazizpratiwi@gmail.com

ABSTRACT

The rapid development of e-commerce in the last decade has brought significant environmental challenges, especially in the logistics sector which contributes greatly to global carbon emissions. This research aims to analyze green logistics strategies implemented by e-commerce companies and evaluate their effectiveness in balancing sustainability and cost efficiency. The method used is a Systematic Literature Review (SLR) with the PRISMA approach, which includes analysis of the latest literature regarding green logistics practices. The research results show that strategies such as sustainable packaging, carbon neutral shipping, route optimization, and collaboration with green suppliers can reduce environmental impact while increasing operational efficiency. However, challenges such as high initial costs, varying regulations, and consumer preferences for low prices are obstacles to implementing this strategy. This research provides recommendations for e-commerce companies to adopt more effective and sustainable green logistics practices.

Keywords: Green Logistics, E-commerce, Sustainability, Cost Efficiency, Environmental Strategy, Carbon Emissions.

ABSTRAK

Perkembangan pesat e-commerce dalam dekade terakhir telah membawa tantangan lingkungan yang signifikan, terutama dalam sektor logistik yang berkontribusi besar terhadap emisi karbon global. Penelitian ini bertujuan untuk menganalisis strategi logistik hijau yang diterapkan oleh perusahaan e-commerce dan mengevaluasi efektivitasnya dalam menyeimbangkan keberlanjutan dan efisiensi biaya. Metode yang digunakan adalah Systematic Literature Review (SLR) dengan pendekatan PRISMA, yang mencakup analisis terhadap literatur terkini mengenai praktik logistik hijau. Hasil penelitian menunjukkan bahwa strategi seperti kemasan berkelanjutan, pengiriman netral karbon, optimasi rute, dan kolaborasi dengan pemasok hijau dapat mengurangi dampak lingkungan sekaligus meningkatkan efisiensi operasional. Namun, tantangan seperti biaya awal yang tinggi, regulasi yang bervariasi, dan preferensi konsumen terhadap harga murah menjadi hambatan dalam penerapan strategi ini. Penelitian ini memberikan rekomendasi bagi perusahaan e-commerce untuk mengadopsi praktik logistik hijau yang lebih efektif dan berkelanjutan.

Kata Kunci: Logistik Hijau, E-commerce, Keberlanjutan, Efisiensi Biaya, Strategi Lingkungan, Emisi Karbon.

1. INTRODUCTION

The development of e-commerce over the last decade has fundamentally transformed the global business landscape, driven by increased internet access, mobile device penetration, and evolving consumer behaviors. The global e-commerce market is projected to exceed \$7 trillion by 2025, indicating a robust growth trajectory (Oláh et al., 2023). This expansion reflects not only technological advancement but also a shift in consumption patterns, where consumers increasingly favor online shopping over traditional retail methods (Heliani, 2023). The COVID-19 pandemic has further accelerated this trend, as businesses and consumers alike adapted to a more integrated digital economy (Falk & Hagsten, 2015). However, the rapid

 $PRODUCTIVITY, 2 \ (1) \ 2025: 1845-1858 \ , \\ \underline{https://iournal.ppipbr.com/index.php/productivity/index} \ | \ DOI \ https://doi.org/10.62207$

^{*}Corresponding Author

growth of e-commerce is accompanied by significant environmental challenges, particularly in logistics. E-commerce logistics contributes substantially to carbon emissions, primarily due to increased shipping frequencies, excessive packaging, and high rates of product returns (Hindrayani, 2019). The transportation sector accounts for approximately 25% of global CO_2 emissions, with e-commerce logistics being a notable contributor (Karpunina et al., 2021). This highlights the urgent need for sustainable practices within the e-commerce sector to mitigate its environmental footprint.

In response to these challenges, many companies are adopting green logistics strategies aimed at reducing their environmental impact without sacrificing efficiency. These strategies include the use of electric vehicles for deliveries, Al-based route optimization, and environmentally friendly packaging solutions (Help, 2024). Research indicates that while these initiatives are promising, their effectiveness in balancing environmental sustainability with cost efficiency remains uncertain (Dong & Jia, 2022). The integration of sustainable practices into e-commerce operations is crucial for achieving a more sustainable digital economy, as it addresses both consumer demand for eco-friendly options and the pressing need to reduce carbon emissions associated with logistics (Şahin & Güler, 2022). The intersection of e-commerce and sustainability is an area ripe for further exploration. Studies suggest that the implementation of sustainable practices in e-commerce can lead to significant improvements in environmental outcomes, but this requires a comprehensive approach that includes policy support and industry collaboration (Singh, 2024). As e-commerce continues to evolve, the focus on sustainability will likely become a defining characteristic of successful business models in the digital economy (Tang & Wang, 2020).

While the adoption of green logistics strategies is increasing, there is still a gap in research regarding their effectiveness, especially in the context of balancing sustainability and cost efficiency. Many studies have explored sustainability aspects in e-commerce logistics, but few have explicitly examined how these strategies can be implemented without significantly increasing operational costs. In addition, implementing green logistics strategies in e-commerce often faces various complex challenges. Factors such as high initial investment, an imbalance between customer demand for fast service and the need to reduce carbon emissions, as well as unclear regulations governing sustainability standards in the supply chain are the main obstacles. For example, many companies experience the dilemma of choosing between the additional costs of green logistics and the need to maintain price competitiveness in a competitive market. Thus, this research seeks to identify how green logistics strategies in e-commerce can be implemented effectively while maintaining a balance between sustainability and cost efficiency.

This research aims to analyze various green logistics strategies that have been adopted by e-commerce companies and evaluate their effectiveness in reducing environmental impacts. In the increasingly digital era, many companies are starting to implement environmentally friendly practices in their supply chains, such as the use of electric vehicles, biodegradable packaging, and technology-based delivery route optimization. Therefore, it is important to understand the extent to which these strategies contribute to reducing carbon emissions and reducing operational waste. Apart from that, this research also seeks to identify factors that influence the balance between sustainability and cost efficiency in implementing green logistics. In practice, companies often face a dilemma between investing in environmentally friendly technologies and the demand to remain competitive in terms of costs. Factors such as infrastructure, regulations, consumer preferences, and technology availability play an important role in determining the success of a green logistics strategy. Furthermore, this research will explore the main challenges and obstacles faced by companies in implementing green logistics strategies. Some frequent challenges include high initial costs, complexity in supply chain management, and internal resistance to operational change. Therefore, this

research will also provide evidence-based recommendations that can help companies overcome these obstacles and increase the effectiveness of their strategies in the long term.

As a practical contribution, this research aims to develop a conceptual framework that can be used by e-commerce companies in making decisions regarding green logistics. This framework will be designed based on the results of analysis of previous studies and best practices that have been implemented by the industry. With this conceptual model, it is hoped that companies can more easily balance sustainability and cost efficiency in their logistics strategies, so that they not only provide benefits to the environment but also maintain their business competitiveness.

Based on the research objectives, the main questions to be answered in this research are: "How do green logistics strategies in e-commerce balance sustainability and cost efficiency?". To support deeper exploration, this research will also answer the following derivative questions:

- 1. What are the green logistics strategies commonly implemented in the e-commerce industry?
- 2. How do these strategies contribute to environmental sustainability?
- 3. What is the financial impact of implementing a green logistics strategy on an e-commerce company?
- 4. What are the main challenges faced by companies in adopting a green logistics strategy?
- 5. What innovations can be used to increase the effectiveness of green logistics while maintaining cost efficiency?

This research has broad significance in both academic and practical domains. Academically, this research contributes to filling the research gap regarding the relationship between green logistics, sustainability, and cost efficiency in the e-commerce industry. By using a Systematic Literature Review (SLR) approach, this research will compile and analyze empirical evidence from various previous studies to provide a deeper understanding of the dynamics of green logistics strategies. For industry, this research provides practical insights for e-commerce companies in selecting and implementing green logistics strategies that not only have a positive impact on the environment but are also financially efficient. The results of this research can help logistics managers and policy makers in developing data-based strategies to optimize their supply chains. From a policy perspective, this research can be a reference for the government and regulators in designing policies that encourage the adoption of green logistics without burdening industry players. By understanding the challenges companies face in balancing sustainability and costs, policymakers can develop more adaptive regulations and encourage investment in green logistics infrastructure. Thus, this research not only contributes to the academic realm but also has a significant impact in supporting sustainable business practices and more inclusive policies in the e-commerce logistics sector.

2. METHODS

2.1 Research Design

This research uses the method Systematic Literature Review (SLR) with approach Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISM). This method was chosen to ensure that the literature review is carried out systematically, transparently and can be replicated, so that the results obtained have high validity and reliability. The PRISMA approach is used to filter and select relevant literature in stages, starting from identification, screening, eligibility, to selecting the final studies to be analyzed. Thus, this research will provide a comprehensive overview of green logistics strategies in e-commerce as well as the balance between sustainability and cost efficiency.

2.2 Data Collection

.

Data collection was carried out through searching scientific journals and academic publications from various leading databases, such as Scopus, Web of Science, ScienceDirect, IEEE Xplore, and Google Scholar. These sources were selected because they have high credibility and cover the latest and most relevant research in the fields of green logistics and e-commerce. To ensure the data analyzed reflects recent developments, this research only included articles published in the last 10 years. It aims to capture the latest trends in green logistics strategies as well as changes that occur due to technological developments, regulations and dynamics of the e-commerce industry.

2.3 Inclusion and Exclusion Criteria

To keep the analysis focused and relevant, this study applied inclusion and exclusion criteria in selecting articles. Inclusion criteria include studies that explicitly address green logistics strategies in the context of e-commerce, as well as studies that evaluate the balance between sustainability and cost efficiency. Thus, only studies that were truly relevant to the research objectives were included in the analysis.

In contrast, studies that did not address the balance between sustainability and cost efficiency were excluded, even though they addressed the topic of green logistics in general. In addition, studies that only focus on one aspect, such as highlighting only sustainability without considering cost efficiency, or vice versa, were also not included in this review. This was done to ensure that the selected research provided comprehensive insight into the two main aspects of this research.

2.4 Data Analysis

The data collected will be analyzed using the method thematic analysis to identify key patterns and themes in green logistics strategies in e-commerce. This analysis will cover several important aspects, including the main strategies used by companies in implementing green logistics, the benefits obtained both in terms of sustainability and cost efficiency, as well as the challenges faced in implementing these strategies.

In addition, this research will also examine the cost implications of green logistics strategies, both in the short and long term. Using a thematic approach, the analysis results will be organized into main categories that can provide in-depth insight into how e-commerce companies can adopt effective green logistics strategies without sacrificing profitability. It is hoped that the results of this analysis can contribute to policy makers, industry players and academics in developing better solutions in implementing green logistics in e-commerce.

3. RESULTS AND DISCUSSIONS

3.1 Overview of Green Logistics Strategies in E-Commerce

In the realm of e-commerce, the adoption of green logistics strategies is increasingly recognized as essential for mitigating environmental impacts while ensuring operational efficiency. This dual focus on sustainability and profitability is particularly critical given that logistics significantly contributes to the carbon footprint of the e-commerce sector. The following discussion synthesizes key green logistics strategies employed in e-commerce, supported by relevant literature.

Sustainable Packaging

Sustainable packaging is a cornerstone of green logistics in e-commerce. Companies are increasingly opting for eco-friendly materials, such as recycled, biodegradable, or plant-based options, to minimize waste. Research indicates that while the initial costs of sustainable packaging may be higher, these expenses can be offset by long-term savings in waste management and storage, alongside enhanced customer loyalty driven by environmental concerns (Patella et al., 2020; Hischier, 2018). The shift towards minimalist packaging further

supports waste reduction efforts, aligning with consumer preferences for sustainability (Zhang, 2023).

Carbon-Neutral Delivery

Another pivotal strategy is the implementation of carbon-neutral delivery systems. E-commerce firms are investing in electric vehicles and renewable energy sources, alongside carbon offset initiatives, to curtail greenhouse gas emissions associated with logistics operations. Although these strategies necessitate significant upfront investments, they yield long-term advantages such as compliance with environmental regulations, improved brand reputation, and potential reductions in fuel costs (Dubisz et al., 2022; Villa et al., 2023). Moreover, offering green shipping options has become a competitive differentiator, appealing to environmentally conscious consumers (Zhang, 2023).

Route Optimization

The utilization of advanced technologies like artificial intelligence (AI) and the Internet of Things (IoT) for route optimization is transforming logistics efficiency. By leveraging real-time data, e-commerce companies can identify the most efficient delivery routes, thereby reducing fuel consumption and enhancing delivery speed. This optimization not only diminishes carbon emissions but also lowers operational costs and boosts customer satisfaction through timely deliveries (Kandula et al., 2021; Mangiaracina et al., 2019; Zhou et al., 2016). The integration of such technologies is critical for addressing the challenges posed by the increasing volume of online orders (Alkhalifah et al., 2022).

Reverse Logistics

Efficient reverse logistics is crucial for sustainability in e-commerce. Effective returns management can significantly reduce waste and associated costs. Strategies such as decentralized return centers and partnerships with recycling firms are being employed to minimize e-waste and enhance product reusability (Zhang, 2023; Yuan et al., 2023). By optimizing reverse logistics, companies can not only lower their carbon footprint but also improve overall cost efficiency in their operations (Yuan et al., 2023).

Collaboration with Green Suppliers

Collaborating with suppliers who adhere to high sustainability standards is another vital strategy for fostering a greener supply chain. E-commerce businesses are increasingly selecting suppliers based on their sustainable practices, which include the use of environmentally friendly materials and ethical labor policies. Implementing a supplier rating system helps ensure compliance with sustainability criteria, ultimately enhancing brand reputation and operational efficiency (Patella et al., 2020; Ji & Sun, 2017). Although these partnerships may incur higher short-term costs, they can lead to significant long-term benefits, including regulatory compliance and improved supply chain resilience (Wang, 2022). In conclusion, the integration of green logistics strategies in e-commerce is essential for balancing environmental sustainability with operational efficiency. By adopting sustainable packaging, carbon-neutral delivery, route optimization, effective reverse logistics, and collaboration with green suppliers, e-commerce companies can significantly reduce their environmental impact while enhancing their competitive edge in a market increasingly driven by consumer demand for sustainability.

3.2. Sustainability vs. Cost Efficiency: A Comparative Analysis

The implementation of green logistics strategies in e-commerce presents a multifaceted challenge, necessitating a careful balance between environmental sustainability and cost efficiency. As companies increasingly adopt these strategies, they often encounter

significant initial investments that can strain profitability. This analysis explores the environmental benefits of green logistics, particularly in reducing carbon footprints, while also addressing the financial implications of these initiatives.

Environmental Benefits of Green Logistics Strategies and Carbon Footprint Reduction

Green logistics strategies are instrumental in mitigating environmental impacts, particularly through the reduction of greenhouse gas emissions, packaging waste, and resource consumption. For instance, optimizing delivery routes using artificial intelligence (AI) and the Internet of Things (IoT) can lead to substantial reductions in fuel consumption, thereby lowering carbon emissions (Lin & Jian, 2021; Jiang et al., 2020). The integration of electric vehicles (EVs) into delivery fleets further diminishes reliance on fossil fuels, contributing to a cleaner transportation sector (Yang, 2023).

Moreover, the adoption of recycled and biodegradable packaging materials significantly reduces plastic waste, addressing one of the critical environmental challenges of modern logistics (Mangiaracina et al., 2015). Minimalist packaging strategies not only decrease raw material usage but also minimize waste volume, aligning with sustainability goals (Mangiaracina et al., 2015). In distribution centers, the implementation of renewable energy systems, such as solar and wind power, can drastically cut down on carbon-based electricity consumption (tian, 2024). Additionally, automation technologies in warehouse management enhance energy efficiency, further reducing operational waste (Mangiaracina et al., 2015).

Despite these advantages, the financial implications of green logistics cannot be overlooked. The initial costs associated with transitioning to sustainable practices often pose a challenge for e-commerce companies striving to maintain profitability.

The Impact of Green Logistics Implementation Costs on E-Commerce Profitability

The financial burden of implementing green logistics strategies is significant, primarily due to high initial investment costs. For example, transitioning to electric vehicles and establishing the necessary charging infrastructure require substantial capital outlays (Yang, 2023). Similarly, upgrading logistics management systems to incorporate AI and IoT technologies for route optimization entails considerable initial expenditures (Liu, 2020).

Operating costs also present a challenge; sustainable packaging solutions frequently come at a higher price compared to conventional options, and low-carbon shipping methods may necessitate the use of more expensive transportation alternatives (Mangiaracina et al., 2015). However, it is essential to consider the long-term benefits that can offset these initial costs. Enhanced operational efficiencies gained through green logistics can lead to increased profitability over time (Jiang & Sun, 2022). Furthermore, compliance with evolving environmental regulations can shield companies from potential fines and penalties, thereby protecting their financial interests (Mangiaracina et al., 2015).

Consumer preferences increasingly favor companies that demonstrate a commitment to environmentally friendly practices, which can enhance customer loyalty and brand value (Mangiaracina et al., 2015). E-commerce companies that effectively integrate green logistics into their business models are likely to be better positioned to adapt to changing global environmental regulations and capitalize on the growing consumer trend toward sustainability. In conclusion, while the implementation of green logistics strategies in e-commerce involves significant upfront costs, the long-term environmental benefits and potential for enhanced profitability present a compelling case for their adoption. Companies must navigate the complexities of balancing sustainability with cost efficiency to thrive in an increasingly eco-conscious market.

3.3. Challenges in Implementing Green Logistics

The implementation of green logistics strategies in the e-commerce sector presents a multifaceted array of challenges that hinder their adoption despite the potential environmental and operational benefits. One of the primary obstacles is the significant initial investment required for transitioning to green logistics practices. Companies often face a financial gap between the upfront costs associated with adopting sustainable technologies and the long-term benefits that may not be immediately realized. For instance, the transition to electric vehicles necessitates substantial investments in both the vehicles themselves and the supporting charging infrastructure (Tucci et al., 2015). Furthermore, advanced technologies such as AI and IoT for route optimization entail high costs for system integration and employee training, while eco-friendly packaging options typically incur higher expenses compared to conventional materials (Min & Kim, 2012). The delayed realization of operational cost savings, which are contingent upon energy efficiency and logistics optimization, exacerbates this challenge, as companies must navigate transition costs before they can enjoy the benefits of enhanced reputation and customer loyalty (Tucci et al., 2015; Min & Kim, 2012).

In addition to financial constraints, regulatory barriers significantly impede the adoption of green logistics. The lack of uniform regulations across different countries forces multinational companies to tailor their strategies to comply with varying legal frameworks, which can be both complex and costly (Min & Kim, 2012). While some regions offer incentives for environmentally friendly practices, others lack clear policies, creating a patchwork of compliance requirements that complicate operational strategies (Tucci et al., 2015). Moreover, the evolving landscape of environmental regulations, including carbon taxes and stringent emissions standards, necessitates ongoing adjustments to business operations, often leading to increased administrative burdens (Min & Kim, 2012; Jiang & Ma, 2014). To mitigate these regulatory challenges, collaboration with governmental bodies and environmental organizations is essential to develop supportive policies that facilitate the broader implementation of green logistics initiatives (Tucci et al., 2015).

Consumer preferences also play a crucial role in the challenges faced by companies in adopting green logistics. Despite a growing awareness of environmental issues, many consumers prioritize low prices and rapid delivery over sustainability (Haws et al., 2013). Research indicates that only a small segment of the market is willing to pay a premium for green logistics services, which forces companies to strike a balance between cost and sustainability (Haws et al., 2013; Paço et al., 2019). Additionally, a lack of consumer awareness regarding the long-term benefits of green logistics further complicates this issue, as many customers remain focused on immediate personal benefits such as price and convenience (Haws et al., 2013; Paço et al., 2019). The competitive pressure from major e-commerce players, who often offer cheaper and faster shipping options, further discourages the adoption of eco-friendly alternatives (Haws et al., 2013). To address these consumer-related challenges, companies can engage in educational marketing campaigns to raise awareness about the importance of green logistics, provide incentives for selecting eco-friendly shipping options, and integrate sustainability into their business models without significantly increasing prices (Haws et al., 2013; Paço et al., 2019). In summary, the challenges of implementing green logistics in the e-commerce sector are multifaceted, encompassing financial, regulatory, and consumer-related barriers. Addressing these challenges requires a strategic approach that includes gradual investments, collaboration with regulatory bodies, and consumer education initiatives to foster a more sustainable logistics landscape.

3. Consumer Preference for Low Prices Compared to Sustainability

Consumer preferences in the realm of e-commerce reveal a complex interplay between price sensitivity and sustainability concerns. Despite a growing awareness of environmental

issues, many consumers continue to prioritize low prices over sustainable options. This phenomenon can be attributed to several factors, including limited willingness to pay (WTP) for green products, lack of consumer awareness, and competition from fast and cheap shipping models.

Limited Willingness to Pay for Green Products

Research indicates that a significant portion of consumers remains reluctant to pay a premium for environmentally friendly products or services. For instance, Tsai and Chang highlight that shipping fees play a crucial role in influencing consumers' purchasing decisions, with many abandoning their carts due to high shipping costs (Tsai & Chang, 2022). This behavior suggests that while consumers may express concern for sustainability, their purchasing actions often reflect a preference for lower prices. Kader et al. further emphasize that e-shoppers exhibit a trade-off between adopting green delivery options and the associated costs, indicating that only a small segment is willing to embrace green logistics when it comes at a higher price (Kader et al., 2022). This limited WTP poses a challenge for companies aiming to implement sustainable practices without alienating cost-sensitive consumers.

Lack of Consumer Awareness

Another significant barrier is the lack of consumer awareness regarding the long-term benefits of green logistics. Many consumers prioritize immediate personal benefits, such as price and convenience, over the ecological impact of their shipping choices. Oláh et al. argue that while transparency and communication about sustainable practices can enhance e-commerce sustainability, many consumers remain uninformed about the environmental implications of their choices (Oláh et al., 2023). This lack of awareness can lead to a preference for cheaper, conventional shipping options, as consumers may not fully grasp the importance of supporting green logistics initiatives.

Competition with Fast and Cheap Shipping Models

The dominance of large e-commerce platforms like Amazon and Alibaba has set a high standard for fast and affordable shipping, making it increasingly difficult for green logistics models to compete. Research by Villa et al. indicates that consumer attitudes towards environmentally friendly delivery practices are often overshadowed by the allure of speed and low costs (Villa et al., 2023). As a result, customers frequently opt for cheaper standard shipping options over potentially more sustainable alternatives that may involve higher costs or longer delivery times. This competitive landscape necessitates that companies educate consumers about the importance of green logistics and offer incentives for choosing sustainable shipping options.

In conclusion, while the implementation of green logistics presents significant benefits for both the environment and business efficiency, several barriers must be addressed. E-commerce companies need to find innovative strategies to bridge the investment cost gap, navigate complex regulations, and enhance consumer education regarding sustainable practices. By adopting a multifaceted approach that includes marketing campaigns, consumer incentives, and the integration of sustainability into business models, companies can potentially transform green logistics into a competitive advantage that fosters business growth while positively impacting the environment.

3.4 Future Trends and Innovations in Green Logistics

The future of green logistics is increasingly shaped by technological advancements and regulatory frameworks aimed at enhancing sustainability in supply chains. As awareness of environmental issues rises, innovations such as artificial intelligence (AI), blockchain

technology, electric vehicles (EVs), and drone delivery systems are becoming pivotal in transforming logistics operations to be more efficient and eco-friendly.

1. The Role of AI and Blockchain in Improving Green Supply Chain Efficiency

Al and blockchain are critical technologies that enhance the efficiency of green supply chains. Al facilitates logistics optimization by analyzing vast datasets to improve shipping routes, reduce fuel consumption, and enhance operational efficiency. For instance, machine learning algorithms can forecast market demand, which helps in minimizing waste during storage and transportation (Chen, 2024). Furthermore, AI can optimize delivery schedules by factoring in environmental variables like weather and traffic conditions, thereby reducing the carbon footprint associated with logistics operations ("Artificial Intelligence in Supply Chain Management", 2024).

On the other hand, blockchain technology provides a secure and transparent framework for recording transactions within the supply chain. This transparency allows companies to verify product origins and assess the sustainability practices of their suppliers (Tijan et al., 2019). The implementation of smart contracts within blockchain systems automates compliance with environmental regulations, ensuring that all supply chain activities adhere to sustainability standards (Tan et al., 2020). The integration of AI and blockchain not only enhances operational efficiency but also fosters a more transparent and accountable logistics system, ultimately contributing to reduced carbon emissions and improved sustainability practices (Chen et al., 2023).

2. The Development of Electric Vehicles and Drone Delivery in E-Commerce Logistics

The logistics sector is witnessing a significant shift towards sustainable transportation technologies, particularly through the adoption of electric vehicles (EVs) and drone delivery systems. Major logistics companies, including Amazon and UPS, are increasingly incorporating EV fleets to minimize carbon emissions associated with urban distribution (Liu, 2024). The expansion of charging infrastructure is crucial for enhancing the operational efficiency of these electric fleets, making them a viable alternative to traditional fossil fuel-powered vehicles (Large, 2024).

Drone technology is also emerging as a promising solution for reducing emissions in logistics. Drones can facilitate short-haul deliveries, thereby decreasing reliance on conventional delivery vehicles and optimizing delivery times (Ma & Kim, 2023). Companies like Amazon Prime Air are actively developing drone delivery systems that not only enhance efficiency but also address urban traffic challenges and improve access to remote areas (Lahkani et al., 2020). Despite facing hurdles such as regulatory constraints and battery limitations, the potential for drones to revolutionize green logistics remains significant (Ma & Kim, 2023).

3. Global Regulations and Their Impact on the Future of Green Logistics

The landscape of green logistics is heavily influenced by stringent global regulations aimed at promoting sustainable practices. Many countries are implementing carbon tax policies that impose financial penalties on companies with high emissions, thereby incentivizing the adoption of greener logistics solutions (Large, 2024). For example, the European Union's zero-emission vehicle standards compel companies to transition to electric vehicles and renewable energy sources in their operations (Venkatesh et al., 2020).

Moreover, international organizations like the United Nations and the European Union are establishing global sustainability standards that companies must adhere to in order to compete in the global marketplace (Tan et al., 2020). These standards often require the use of environmentally friendly materials and energy-efficient practices in logistics operations. Additionally, governments are increasingly offering tax incentives and subsidies to encourage

companies to invest in green technologies, further driving the transition towards sustainable logistics (Nagy, 2024; Tan et al., 2020). As regulatory pressures mount, e-commerce companies must adapt swiftly to these trends to maintain competitiveness in the evolving market landscape.

In conclusion, the future of green logistics is poised for significant transformation driven by technological innovations and regulatory frameworks. The integration of AI and blockchain enhances supply chain efficiency and transparency, while the adoption of electric vehicles and drone delivery systems represents a shift towards sustainable transportation. As global regulations become more stringent, companies will need to embrace these innovations to thrive in a competitive and environmentally conscious marketplace.

4. CONCLUSION

4.1 Summary of Findings

Green logistics strategies in e-commerce play an important role in reducing environmental impact while optimizing operational costs. Various strategies such as sustainable packaging, carbon-neutral delivery, route optimization, reverse logistics, and partnerships with green suppliers have been proven to have a positive impact on sustainability and cost efficiency. However, implementing this strategy faces significant challenges, including high initial costs, varying regulations across countries, and gaps in technology adoption. Companies that successfully balance sustainability and cost efficiency are those that are able to adopt smart technologies such as AI and blockchain, and leverage innovation in green supply chains. Case studies from large e-commerce companies such as Amazon, Alibaba, and JD.com show that success in green logistics relies heavily on innovative strategies and policies that support the adoption of environmentally friendly practices.

4.2 Theoretical and Practical Implications Implications for academics:

- Further research is needed regarding business models that support green logistics, including how this strategy can be integrated more effectively in e-commerce.
- Development of a more comprehensive theoretical framework for understanding the interactions between technology, regulation and sustainability strategies in logistics.

Implications for industry:

- Recommendations for e-commerce companies to adopt green logistics strategies effectively by considering cost and regulatory aspects.
- Leveraging AI and blockchain to increase supply chain efficiency and transparency in logistics sustainability.
- Development of incentive policies for companies to invest in electric vehicles, green energy infrastructure and other sustainable logistics technologies.

4.3 Limitations and Future Research Directions **Research limitations:**

- Limitations in the scope of the literature study used, because not all research in this field can be fully accessed.
- The research focus is still conceptual and there is a lack of empirical studies regarding the real impact of green logistics strategies on the long-term profitability of e-commerce.

Future research directions:

 Deeper investigation into the role of AI and big data in optimizing green logistics, including how these technologies can increase efficiency and reduce operational costs.

- Empirical study of the long-term impact of green logistics strategies on the profitability and competitiveness of e-commerce companies.
- Exploration of global and regional policies that can accelerate the adoption of green logistics in various countries, as well as how companies can adapt their strategies to applicable regulations.

By considering existing challenges and opportunities, research on green logistics in e-commerce needs to continue to develop to make a greater contribution to creating a more sustainable and economically efficient logistics system.

5. REFERENCES

- Alkhalifah, A., Alorini, F., & Alturki, R. (2022). Enhancement of e-commerce service by designing last mile delivery platform. Computer Systems Science and Engineering, 42(1), 49-67. https://doi.org/10.32604/csse.2022.021326
- Chen, H. (2024). Mechanism study on innovative influences of ai and blockchain on supply chain logistics: case study of jd and alibaba. Advances in Economics Management and Political Sciences, 109(1), 94-100. https://doi.org/10.54254/2754-1169/109/2024bj0116
- Chen, J., Feng, B., Li, C., & Yao, L. (2023). The application and ethics of artificial intelligence in blockchain. Journal of Global Information Management, 31(7), 1-32. https://doi.org/10.4018/jgim.323656
- Dong, J. and Jia, H. (2022). Swot analysis: growth of e-commerce within the context of digital economy. BCP Business & Management, 33, 508-518. https://doi.org/10.54691/bcpbm.v33i.2834
- Dubisz, D., Golińska-Dawson, P., & Zawodny, P. (2022). Measuring co2 emissions in e-commerce deliveries: from empirical studies to a new calculation approach. Sustainability, 14(23), 16085. https://doi.org/10.3390/su142316085
- Falk, M. and Hagsten, E. (2015). E-commerce trends and impacts across europe. International Journal of Production Economics, 170, 357-369. https://doi.org/10.1016/j.ijpe.2015.10.003
- Haws, K., Winterich, K., & Naylor, R. (2013). Seeing the world through green-tinted glasses: green consumption values and responses to environmentally friendly products. Journal of Consumer Psychology, 24(3), 336-354. https://doi.org/10.1016/j.jcps.2013.11.002
- Heliyani, H. (2023). The contribution of e-commerce to economic growth in the covid-19 era. Economics Development Analysis Journal, 12(1), 129-140. https://doi.org/10.15294/edaj.v12i1.58386
- Hindrayani, A. (2019). How does electronic payment systems affect the development of e-commerce business in indonesia?. Economica, 8(1), 12-19. https://doi.org/10.22202/economica.2019.v8.i1.3604
- Hischier, R. (2018). Car vs. packaging—a first, simple (environmental) sustainability assessment of our changing shopping behaviour. Sustainability, 10(9), 3061. https://doi.org/10.3390/su10093061
- Ji, S. and Sun, Q. (2017). Low-carbon planning and design in b&r logistics service: a case study of an e-commerce big data platform in china. Sustainability, 9(11), 2052. https://doi.org/10.3390/su9112052
- Jiang, S. and Ma, C. (2014). Game models of green supply chain involved the third party logistics. Applied Mechanics and Materials, 700, 727-733. https://doi.org/10.4028/www.scientific.net/amm.700.727
- Jiang, T. and Sun, Y. (2022). Study on the green development channels of logistics enterprises in e-commerce environment., 326-336. https://doi.org/10.2991/978-94-6463-005-3_32
- Jiang, X., Ma, J., Zhu, H., Guo, X., & Huang, Z. (2020). Evaluating the carbon emissions efficiency of the logistics industry based on a super-sbm model and the malmquist index from a

- strong transportation strategy perspective in china. International Journal of Environmental Research and Public Health, 17(22), 8459. https://doi.org/10.3390/ijerph17228459
- Kader, M., Rashaduzzaman, M., Huang, X., & Kim, S. (2022). Influencing factors toward e-shoppers' adoption of green last-mile delivery. International Journal of Retail & Distribution Management, 51(2), 220-237. https://doi.org/10.1108/ijrdm-10-2021-0480
- Kandula, S., Krishnamoorthy, S., & Roy, D. (2021). A prescriptive analytics framework for efficient e-commerce order delivery. Decision Support Systems, 147, 113584. https://doi.org/10.1016/j.dss.2021.113584
- Karpunina, E., Isaeva, E., Galieva, G., Sobolevskaya, T., & Rodin, A. (2021). E-commerce as a driver of economic growth in Russia., 1622-1633. https://doi.org/10.1007/978-3-030-69415-9_179
- Lahkani, M., Wang, S., Urbański, M., & Egorova, M. (2020). Sustainable b2b e-commerce and blockchain-based supply chain finance. Sustainability, 12(10), 3968. https://doi.org/10.3390/su12103968
- Lin, S. and Jian, W. (2021). Driving factors of carbon emissions in china's
- Liu, G. (2024). Supply chain enhancement strategies in the era of green development: a case study on sf express. Highlights in Business Economics and Management, 28, 104-109. https://doi.org/10.54097/ct1dw879
- Liu, W. (2020). Route optimization for last-mile distribution of rural e-commerce logistics based on ant colony optimization. leee Access, 8, 12179-12187. https://doi.org/10.1109/access.2020.2964328
- logistics industry. Polish Journal of Environmental Studies, 31(1), 163-177. https://doi.org/10.15244/pjoes/139304
- Ma, R. and Kim, Y. (2023). Tracing the evolution of green logistics: a latent dirichlet allocation based topic modeling technology and roadmapping. Plos One, 18(8), e0290074. https://doi.org/10.1371/journal.pone.0290074
- Mangiaracina, R., Marchet, G., Perotti, S., & Tumino, A. (2015). A review of the environmental implications of b2c e-commerce: a logistics perspective. International Journal of Physical Distribution & Logistics Management, 45(6), 565-591. https://doi.org/10.1108/ijpdlm-06-2014-0133
- Mangiaracina, R., Perego, A., Seghezzi, A., & Tumino, A. (2019). Innovative solutions to increase last-mile delivery efficiency in b2c e-commerce: a literature review. International Journal of Physical Distribution & Logistics Management, 49(9), 901-920. https://doi.org/10.1108/ijpdlm-02-2019-0048
- Min, H. and Kim, I. (2012). Green supply chain research: past, present, and future. Logistics Research, 4(1-2), 39-47. https://doi.org/10.1007/s12159-012-0071-3
- Nagy, G. (2024). Green logistics: transforming supply chains for a sustainable future. Advanced Logistic Systems Theory and Practice, 18(3), 29-42. https://doi.org/10.32971/als.2024.026
- Oláh, J., Popp, J., Khan, M., & Kitukutha, N. (2023). Sustainable e-commerce and environmental impact on sustainability. Economics & Sociology, 16(1), 85-105. https://doi.org/10.14254/2071-789x.2023/16-1/6
- Paço, A., Shiel, C., & Alves, H. (2019). A new model for testing green consumer behaviour. Journal of Cleaner Production, 207, 998-1006. https://doi.org/10.1016/j.jclepro.2018.10.105
- Patella, S., Grazieschi, G., Gatta, V., Marcucci, E., & Carrese, S. (2020). The adoption of green vehicles in last mile logistics: a systematic review. Sustainability, 13(1), 6. https://doi.org/10.3390/su13010006

- Şahin, B. and Güler, M. (2022). The effect of perceived benefits of e-commerce platforms on online purchase intentions in the context of the pandemic covid-19. Transnational Marketing Journal, 10(2), 335-349. https://doi.org/10.33182/tmj.v10i2.2079
- Singh, D. (2024). Navigating sustainable practices in e-commerce: a systematic literature review with insights from the ado framework. International Journal of Applied Engineering and Management Letters, 56-66. https://doi.org/10.47992/ijaeml.2581.7000.0212
- Tan, B., Wang, F., Liu, J., Kang, K., & Costa, F. (2020). A blockchain-based framework for green logistics in supply chains. Sustainability, 12(11), 4656. https://doi.org/10.3390/su12114656
- Tang, X. and Wang, G. (2020). Design and analysis of e-commerce and modern logistics for regional economic integration in wireless networks. Eurasip Journal on Wireless Communications and Networking, 2020(1). https://doi.org/10.1186/s13638-020-01816-z
- tian, y. (2024). Integrating green logistics into urban agglomeration networks: efficiency improvement approaches and case study.. https://doi.org/10.21203/rs.3.rs-5432040/v1
- Tijan, E., Aksentijević, S., Ivanić, K., & Jardas, M. (2019). Blockchain technology implementation in logistics. Sustainability, 11(4), 1185. https://doi.org/10.3390/su11041185
- Tsai, C. and Chang, C. (2022). Development of a partial shipping fees pricing model to influence consumers' purchase intention under the covid-19 pandemic. Energies, 15(5), 1846. https://doi.org/10.3390/en15051846
- Tucci, J., Shin, S., & Benefield, M. (2015). Logistics sustainability?: long term technology investments and integration. Journal of Management and Sustainability, 5(2). https://doi.org/10.5539/jms.v5n2p48
- Tulong, M. (2024). The influence of e-commerce technology implementation on business development in the digital era. Jurnal Syntax Admiration, 5(11), 5092-5098. https://doi.org/10.46799/jsa.v5i11.1772
- Venkatesh, V., Kang, K., Wang, B., Zhong, R., & Zhang, A. (2020). System architecture for blockchain based transparency of supply chain social sustainability. Robotics and Computer-Integrated Manufacturing, 63, 101896. https://doi.org/10.1016/j.rcim.2019.101896
- Villa, R., Serrano, M., Garcia, T., & González, G. (2023). To green or not to green: the e-commerce-delivery question. Sustainability, 15(16), 12161. https://doi.org/10.3390/su151612161
- Wang, Y. (2022). Research on the path of promoting low-carbon consumption in the e-commerce industry., 144-151. https://doi.org/10.2991/978-94-6463-005-3_15
- Yang, W. (2023). Comparison between subsidy and cap-and-trade policy on electric logistics vehicles leasing system. Advances in Economics and Management Research, 6(1), 390. https://doi.org/10.56028/aemr.6.1.390.2023
- Yuan, X., Sheng, W., Wang, M., & Zhang, D. (2023). Logistics service selection strategy of green manufacturers in green low-carbon supply chain. International Journal of Environmental Research and Public Health, 20(4), 3356. https://doi.org/10.3390/ijerph20043356
- Zhang, M. (2023). A multi-depot pollution routing problem with time windows in e-commerce logistics coordination. Industrial Management & Data Systems, 124(1), 85-119. https://doi.org/10.1108/imds-03-2023-0193
- Zhou, L., Wang, X., Ni, L., & Lin, Y. (2016). Location-routing problem with simultaneous home delivery and customer's pickup for city distribution of online shopping purchases. Sustainability, 8(8), 828. https://doi.org/10.3390/su8080828