# **Management Studies and Business Journal (PRODUCTIVITY)**

Vol 1 (6) 2024 : 978-989

# Blockchain Technology Innovation in Transforming Digital Business Models: A Case Study in the Financial Industry

Inovasi Teknologi Blockchain dalam Transformasi Model Bisnis Digital: Studi Kasus di Industri Keuangan

Almasari Aksenta<sup>1</sup>, Syachrul<sup>2</sup> Politeknik Negeri Samarinda<sup>1,2</sup> \*a.aksenta@polnes.ac.id<sup>1</sup>, syachrul@polnes.ac.id<sup>2</sup>

\*Corresponding Author

#### **ABSTRACT:**

Blockchain technology has emerged as a transformational innovation with significant implications for the financial sector, increasing transparency, security and operational efficiency. This research aims to explore how blockchain technology can change digital business models in the financial industry. Using the PRISMA method, the author conducted a systematic review of relevant literature. The research results show that blockchain adoption can streamline operational processes, reduce costs, and increase data security. The implications of this research include increasing trust and efficiency in financial services, as well as providing practical guidance for the implementation of blockchain technology in the industry.

Keywords: blockchain, digital business models, financial industry, operational efficiency, data security

#### ABSTRAK:

Teknologi blockchain telah muncul sebagai inovasi transformasional dengan implikasi signifikan bagi sektor keuangan, meningkatkan transparansi, keamanan, dan efisiensi operasional. Penelitian ini bertujuan untuk mengeksplorasi bagaimana teknologi blockchain dapat mengubah model bisnis digital di industri keuangan. Dengan menggunakan metode PRISMA, penulis melakukan tinjauan sistematis terhadap literatur yang relevan. Hasil penelitian menunjukkan bahwa adopsi blockchain dapat merampingkan proses operasional, mengurangi biaya, dan meningkatkan keamanan data. Implikasi penelitian ini mencakup peningkatan kepercayaan dan efisiensi dalam layanan keuangan, serta memberikan panduan praktis bagi implementasi teknologi blockchain di industri.

Kata Kunci: blockchain, model bisnis digital, industri keuangan, efisiensi operasional, keamanan data

# 1. Introduction

Blockchain technology has emerged as a transformational innovation with significant implications for various industries, especially the financial sector. The adoption of blockchain technology in the financial industry has resulted in improvements in transaction transparency, security, and operational efficiency (Naher, 2023). By leveraging blockchain, businesses, especially small and medium-sized businesses, can scale up their digital transformation efforts, gain competitive advantage, and focus on core business logic while leveraging the features of this technology (Nguyen, 2024).

Research shows that the future of blockchain technology in finance involves combining it with distributed security authentication, artificial intelligence, secure cloud storage, and big data processing technologies to design advanced financial service platforms (Zhao & Meng, 2019). Blockchain technology has the potential to revolutionize cross-border payments, digital currency development, and risk mitigation in the financial sector (Jiao, 2024). Its implementation, together with smart contracts, has brought about significant technological

PRODUCTIVITY, 1 (6) 2024: 978-989, <a href="https://journal.ppipbr.com/index.php/productivity/index">https://journal.ppipbr.com/index.php/productivity/index</a> | DOI https://doi.org/10.62207 Copyright © 2024 THE AUTHOR(S). This article is distributed under a a Creative Commons Attribution-NonCommercial 4.0 International license. 978

changes in the financial industry, providing new impetus for efficient operations and sustainable market development (Wang, 2024).

Blockchain technology not only improves operational effectiveness in financial services by reducing costs and increasing security and transparency of transactions, but also plays an important role in increasing trust and eliminating the need for third-party verification through consensus-based mechanisms ("The new digital era in finance: Blockchain and smart contracts", 2020; Renduchintala et al., 2022). Furthermore, the impact of blockchain goes beyond the use of cryptocurrencies, offering the prospect of improving financial security and efficiency in a variety of applications (Shoetan, 2024).

The decentralized nature and immutability of blockchain technology has the potential to increase security, efficiency, and trust in the financial system, benefiting both businesses and customers (Jiang, 2024). By providing transparent and traceable transactions, blockchain enriches trust in various financial processes, including data, goods, services, and financial resources (Boison & Antwi-Boampong, 2020). In addition, blockchain technology is recognized as capable of offering competitive and innovative solutions that can revolutionize industrial commercial and financial infrastructure (Neene et al., 2022). As such, blockchain technology has become a cornerstone of digital innovation in the financial sector, offering transformational prospects for businesses to increase security, efficiency and trust in their operations. By integrating blockchain into financial services, organizations can streamline processes, reduce costs, and drive innovation in a rapidly evolving digital landscape.

Blockchain technology has emerged as a revolutionary innovation in the digital era, offering solutions to a number of challenges facing various industries, including the financial sector. This technology, which is essentially a decentralized system of record, provides a secure and transparent way to verify and record transactions. In the context of the digital era, blockchain's relevance lies in its ability to improve operational efficiency and data security, two aspects that are crucial for the sustainability and progress of the financial industry.

The change in digital business models in the financial industry has become an important phenomenon in recent decades. This transformation is driven by the need for increased efficiency, reduced costs, and increased trust and security in transactions. Traditional business models that rely on third parties for verification and recording of transactions are starting to be replaced by more decentralized and transparent models. Technological innovation, especially blockchain, plays a central role in this change by introducing more efficient and secure mechanisms for data and transaction management.

However, the financial industry faces a number of significant challenges in maintaining operational efficiency and data security. Traditional systems are often limited by inefficiency, high costs, and vulnerability to cyberattacks. Data security is becoming increasingly critical as the volume and complexity of digital transactions increases. Additionally, the need for strict regulatory compliance adds a layer of complexity to financial operations. In this context, there is an urgent need for technological innovation that is not only able to overcome these challenges but also drive the transformation of business models that are more adaptive and responsive to market dynamics.

The research question asked is: "How can blockchain technology innovation change digital business models in the financial industry in terms of operational efficiency and data security?" This question highlights the importance of exploring blockchain's potential in improving operational efficiency through automation and cost reduction, while strengthening data security through cryptographic and decentralized mechanisms. This research is expected to provide in-depth insight into how blockchain can be applied effectively in the financial sector, offering innovative and sustainable solutions to existing challenges.

Although blockchain technology has been widely discussed in the literature, there is a lack of research that examines in depth its impact on operational efficiency and data security in the context of digital business models in the financial industry. Existing research tends to focus

on the technical aspects of blockchain or its application in a more general context, but lacks a comprehensive analysis of how this technology can specifically improve efficiency and security in digital financial operations. This research gap is important to address to fully understand blockchain's potential in advancing the financial industry.

The urgency of this research lies in the urgent need to understand the role of blockchain in improving efficiency and security in the financial sector. The financial industry is one of the sectors most vulnerable to data security problems and operational inefficiencies. With huge transaction volumes and the need to comply with stringent regulations, it is important to explore technologies that can offer effective solutions. Blockchain, with its decentralized and secure characteristics, has great potential to address these challenges, but in-depth research is needed to explore how this technology can be implemented practically and effectively.

This research offers a new perspective on how blockchain technology can be implemented to improve digital business models in the financial industry, with a particular focus on operational efficiency and data security. The novelty of this research lies in its holistic approach, combining theoretical analysis with practical case studies to provide a comprehensive picture of the impact of blockchain. It is hoped that this research can fill existing gaps in the literature and provide deeper insight into the potential of blockchain in changing digital business models in the financial sector.

The contributions of this research are both practical and theoretical. Practically, this research will provide insight for financial industry players into ways of implementing blockchain that can increase operational efficiency and security. This information can be used by managers and decision makers to design business strategies that are more effective and responsive to technological developments. Theoretically, this research provides a foundation for further research into the application of blockchain in the financial sector, helping academics and researchers to develop new theories and models that can enrich understanding of this technology. Thus, it is hoped that this research can make a significant contribution to the development of science and practice in the field of finance.

#### 2. Methods

# 2.1. Collecting Articles from Reputable International Databases using the PRISMA Method

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method is used to ensure that the article collection and selection process is carried out systematically and transparently. PRISMA is an approach that has been widely accepted in academic research for conducting comprehensive and structured literature reviews. This method involves several important stages, including identification, screening, eligibility, and inclusion of relevant articles.

# 2.2. Explanation of the PRISMA Method

- 1. Identification: At this stage, relevant articles are identified from various reputable international databases. The databases used include Scopus, Web of Science, and IEEE Xplore.
- 2. Filtering: Articles that have been identified are then filtered based on the title and abstract to determine their relevance to the research topic.
- 3. Qualifications: Articles that pass the screening stage are further examined based on the full text to ensure that they meet the established inclusion and exclusion criteria.
- 4. Participation: Articles that met all criteria were included in the literature review and analyzed in depth.

# 2.3. Keywords Used to Search for Articles

Article searches were carried out using keywords that were relevant and specific to this research topic. Keywords used include:

- 1. "blockchain"
- 2. "digital business models"
- 3. "financial industry"
- 4. "operational efficiency"
- 5. "data security"

This combination of keywords was used to ensure broad and comprehensive coverage of articles relevant to the research topic.

#### 2.4. Number of Articles Retrieved

The total number of articles found from reputable international databases after the identification stage is 113 of articles. From this number, a number of articles were screened and checked for eligibility based on predetermined inclusion and exclusion criteria.

# 2.5. Article Inclusion and Exclusion Techniques

To ensure that the articles analyzed are relevant and of high quality, the following inclusion and exclusion criteria were applied:

#### 2.5.1. Inclusion Criteria:

- 1. Articles published within the last 10 years.
- 2. Peer-reviewed articles.
- 3. Articles relevant to the research topic, especially those discussing the impact of blockchain technology on operational efficiency and data security in the context of digital business models in the financial industry.

#### 2.5.2. Exclusion Criteria:

- 1. Articles that are not in English.
- 2. Articles not available in full text.
- 3. Articles that are not relevant to the research focus, such as research on blockchain but not in the context of the financial industry or digital business models.

By following the PRISMA method, this article collection and selection process is expected to provide a comprehensive, systematic and transparent literature review, which supports the research objective of exploring how blockchain technology can change digital business models in the financial industry.

# 3. Results and Discussions

#### 3.1. Blockchain Technology

Blockchain technology is a revolutionary concept that has gained significant attention in various fields due to its unique characteristics. This technology is essentially a distributed ledger system that is cryptographically secure, making it very difficult to change data once it is recorded. Updates to this ledger depend on achieving consensus among participants or through the execution of smart contracts (Korkuc, 2024). This technology functions as a shared digital ledger that improves data management, security, and data provenance, with the potential to revolutionize sectors such as health by providing a transparent and secure platform for managing sensitive information (Mackey et al., 2019).

The history of blockchain development can be traced back to the emergence of Bitcoin, where the concept of a decentralized ledger system that requires universal participation to

maintain records of all value transactions was introduced. Over time, blockchain has evolved beyond cryptocurrency into a versatile technology that can be applied across a variety of domains. This technology has changed the model of trust between non-trusting peers in distributed networks, offering decentralized, transparent, and immutable record-keeping capabilities (Chen, 2024). The impact of blockchain extends to the financial sector, where this technology can reduce transaction costs, increase the credibility of information, and improve risk management through secure and traceable transaction models (Wu, 2023).

Additionally, blockchain technology has found applications in improving tracking systems in industries such as agriculture and supply chains. By leveraging blockchain-based tracking systems, organizations can build decentralized, transparent, and reliable platforms that automate processes, monitor data in real-time, and facilitate informed decision making (Bosona & Gebresenbet, 2023). Blockchain's role in ensuring data integrity, security, and control has attracted interest in various fields, including medicine and information security, highlighting its potential to transform the global economy through innovations such as cryptocurrencies (Barrera et al., 2023).

In conclusion, the fundamental principles of blockchain technology lie in a distributed, secure, and consensus-driven ledger system. Its evolution from Bitcoin's inception to a versatile technology that can be applied across multiple sectors underscores its transformational potential in revolutionizing data management, increasing trust among stakeholders, and promoting transparency and security across industries.

# 3.2. Digital Business Model

Digital business models play an important role in modern business strategy, leveraging digitalization and technology to improve efficiency and performance. These models consciously recognize the features of digitalization and utilize them in interactions with customers, partners and internal operations (Ahmad et al., 2020). Adaptation to the digital environment involves strategies such as digital transformation, which shifts organizations towards a fully digital ecosystem from traditional analog setups (Kawiana, 2023).

Technological advances, including artificial intelligence, big data, and IoT technologies, empower companies to innovate their business models, leading to increased effectiveness and sustainability in industrial value chains (Lu & Yu, 2022; Parida et al., 2019). Successful businesses in the digital era demonstrate open and flexible organizational structures that encourage cross-functional collaboration and adaptive teams to face dynamic market changes (Raharjo, 2024).

Digital transformation is not an optional extra but a fundamental component of modern business strategy, requiring organizations to integrate sustainability into their core strategy and maintain agility in decision-making processes (Choori, 2023; Singh, 2022). The integration of digital technologies, products and services with customer usage signals a shift towards a more connected framework in the digitalization journey (Veldhoven & Vanthienen, 2021).

In addition, digital technology has changed various aspects of business, including marketing strategies. An integrated digital marketing strategy, which combines social media, search engines and paid campaigns, is essential to ensure sustainable business success (Sayudin, 2023). Technologies such as big data analytics, VR, AR, and blockchain are also reshaping cross-border e-commerce, leading to the digitalization of supply chains and the globalization of market positions (Ma, 2024). In conclusion, digital business models are essential in the contemporary business landscape, driving innovation, efficiency and sustainability. Organizations must embrace digital transformation, leverage technological advances, and adapt their strategies to succeed in the digital era.

# 3.3. Operational Efficiency and Data Security

Operational efficiency in the financial industry refers to the ability of financial institutions to optimize their processes and resources to achieve maximum output with minimal input, thereby reducing costs and improving overall performance (Xue, 2023). This is critical for financial institutions to remain competitive and meet the demands of a rapidly evolving financial landscape. Improving operational efficiency involves simplifying operations, automating processes, and leveraging technology to deliver services more effectively and at lower costs.

Data security is very important in digital financial transactions to protect sensitive information and prevent unauthorized access, fraud and data breaches (Wang, 2023). With the increasing digitalization of financial services, ensuring strong data security measures has become essential to maintain customer trust and confidence in the financial system. Technologies such as blockchain, artificial intelligence, and encryption play an important role in increasing data security in financial transactions (Mbaye, 2021; Farayola, 2024; Yerram, 2021). These technologies enable safe and efficient operations, protect against cyber threats, and ensure the integrity and confidentiality of financial data. In conclusion, operational efficiency and data security are fundamental pillars in the financial industry. By improving operational efficiency and implementing stringent data security measures, financial institutions can increase their competitiveness, build customer trust, and adapt to the digital transformation shaping the financial sector.

# 3.4. Application of Blockchain in the Financial Industry

# 3.4.1. Blockchain Implementation in the Financial Sector

Blockchain technology is increasingly being applied in the financial sector, offering various benefits such as increased transparency, security and efficiency in financial transactions (Jiao, 2024). The use of decentralized ledger systems and distributed ledger technology has brought significant changes in financial transaction processing, increasing transparency, and disrupting traditional financial systems (Abeysekera & Kumarawadu, 2022). Recent applications of blockchain in financial services have demonstrated improvements in transaction transparency, security, and operational effectiveness (Naher, 2023).

The unique characteristics of blockchain technology enable this technology to overcome challenges in financial services, increasing trust, transaction efficiency and overall industry renewal (Jiang, 2024). In the banking sector, blockchain has expanded from cryptocurrency trading to include smart contracts, peer-to-peer transactions, and other banking services (Iacoviello & Bruno, 2023). Additionally, blockchain has the potential to create new business ecosystems for stock trading, registries, smart contracts, and digital identities, as well as promote financial inclusion and equal opportunities (Burmaoğlu et al., 2020).

Blockchain technology has been recognized for its role in increasing security, reducing costs, and providing immutability in financial operations (Rajiah, 2023). By utilizing consensus-based verification, blockchain technology eliminates the need for third-party verification, ultimately increasing trust in financial transactions (Renduchintala et al., 2022). Additionally, blockchain implementation in commercial banks can reduce information asymmetry, transaction uncertainty and transaction costs, contributing to a more sustainable supply chain financing model (Saračević et al., 2021). In conclusion, the application of blockchain technology in the financial industry shows promising results in terms of increasing transparency, security and efficiency in financial transactions. As blockchain applications develop and expand, the technology is expected to revolutionize the traditional financial system and drive further innovation in the sector.

# 3.4.2. Blockchain Innovation in Financial Products and Services

Blockchain technology has had a significant impact on the financial industry by introducing innovative products and services that overhaul traditional financial practices,

increase operational efficiency, and improve security (Wang, 2024). The integration of blockchain and smart contracts has revolutionized financial markets by providing new mechanisms for transactions and ensuring sustainable development (Wang, 2024). Decentralized financial applications driven by blockchain technology have enabled the creation of versatile financial services that operate securely on the blockchain, eliminating the need for intermediaries (Wu, 2024). Additionally, blockchain technology has also simplified functions in finance, supply chain management, and marketing, leading to the decentralization of critical institutional processes (Ahluwalia et al., 2020).

The adoption of blockchain in the financial sector has transformed conventional operations, facilitating more efficient processes and the delivery of innovative services by financial institutions around the world (Daah, 2024). By leveraging blockchain, financial institutions can increase security, reduce costs, and speed up transactions, providing benefits to both customers and banks (Trivedi et al., 2021). In addition, blockchain-based fintech systems have contributed to increasing gross domestic product in the financial sector by optimizing portfolio management, investment operations and risk mitigation (Lăzăroiu, 2023).

Furthermore, blockchain technology has improved financial services by overcoming transaction challenges and fostering trust in the industry (Jiang, 2024). The integration of blockchain in the human resources and finance sectors has opened up new possibilities for applications, offering benefits such as increased transparency and security (Ucha, 2024). In the realm of trade finance, blockchain has revolutionized the process by enabling logistics tracking and seamless integration with trade finance procedures (Chang et al., 2019). Overall, blockchain technology has the potential to revolutionize the financial industry by offering secure, transparent, and efficient solutions that increase trust, reduce costs, and simplify operations across a wide range of financial services (B, 2024).

#### 3.5. Operational Efficiency with Blockchain

Blockchain technology is increasingly recognized for its potential to improve operational efficiency across a variety of industries. When comparing traditional operational processes with blockchain-based ones, the latter offers unmatched transparency, strong security, and decentralized control, leading to increased efficiency and innovation (Bodemer, 2023). In the financial industry, blockchain has shown potential in streamlining and improving clearing and settlement processes, thereby reducing operational costs (Agarwal, 2023). In addition, blockchain-based supply chain financing models have been proven to increase transaction efficiency, reduce corporate financing costs, and improve capital operation efficiency (Wang, 2024; Tang, 2023).

One of the key aspects that contributes to operational efficiency with blockchain is the automation enabled by smart contracts. Smart contracts facilitate the fast and efficient execution of operations between various users, leading to increased transaction speed and reduced costs (Yahiaoui et al., 2020). Furthermore, the integration of blockchain technology in supply chain management has been proven to reduce operational costs, increase adaptability, alignment, and agility of the supply chain, ultimately improving company performance and competitive advantage (Sheel & Nath, 2019).

Furthermore, blockchain technology has been leveraged to disrupt supply chain operations, improve distributed governance, and automate processes, contributing to better performance and efficiency (Chang & Chen, 2020). By digitizing business processes and reducing manual intervention, blockchain-based supply chain financing solutions have enabled the elimination of paper-based documents, thereby further streamlining operations (Gong et al., 2022). In addition, the immutability, readability, and governance features of blockchain have enabled the establishment of incentive systems to improve operational performance and provide incentives to good performers in various industries (Nguyen, 2023). Thus, the adoption of blockchain technology has the potential to revolutionize operational processes by increasing

transparency, security and efficiency. Through the automation of smart contracts, streamlining supply chain operations, and the implementation of incentive systems, blockchain offers a path to increased operational efficiency across a wide range of sectors.

# 3.6. Data Security with Blockchain

Data security is a crucial aspect in the digital era, and a comparison between traditional systems and blockchain technology reveals significant differences in their security mechanisms. Traditional systems rely on centralized authority for data management and security, making them vulnerable to single points of failure and potential breaches (Wenhua et al., 2023). In contrast, blockchain technology offers inherent security features such as cryptography, decentralization, and consensus mechanisms that ensure trust in transactions (Verma, 2023). By utilizing cryptographic algorithms and a decentralized structure, blockchain improves data security by providing transparency, immutability, and decentralized trust (Li et al., 2020).

Cryptography plays an important role in blockchain technology, ensuring the security of data transmission and access (Maheshwari & Mani, 2023). The use of cryptographic techniques in blockchain systems helps protect against online fraud, breaches, and cyber attacks, thereby increasing overall security (Alanhdi, 2024). In addition, decentralization in blockchain, achieved through consensus algorithms and distributed data management, contributes to the creation of a highly secure and trustworthy ledger for recording transactions (Gupta, 2024).

In real-world applications, the financial industry has faced numerous data security breaches, highlighting the need for robust solutions. Blockchain has emerged as a promising technology to overcome these challenges by offering transparency, resistance to change, and high data integrity (Sudaryono et al., 2020). By implementing blockchain-based solutions, organizations can enhance security measures, prevent unauthorized access, and ensure the integrity of sensitive financial data. Thus, blockchain technology revolutionizes data security by providing a secure and transparent framework through cryptography, decentralization, and consensus mechanisms. By addressing vulnerabilities in traditional systems and offering innovative solutions to security breaches, blockchain is emerging as a powerful tool to improve data security across various industries.

#### 3.7. Challenges and Barriers in Blockchain Adoption

The adoption of blockchain technology faces various challenges and obstacles that hinder its widespread implementation in various sectors. These barriers can be categorized into technical and regulatory barriers, as well as organizational and management challenges. From a technical perspective, one of the main barriers to blockchain adoption is the slow speed of transaction processing, which limits its scalability and applicability in large-scale operations (Prewett et al., 2019). Additionally, issues such as concerns about scalability, energy consumption of consensus mechanisms, and integration challenges with existing systems pose significant barriers to adoption (Shoetan, 2024). Furthermore, the lack of operational standards and technical challenges, including the computational costs and equipment required to run blockchain systems, further complicate the adoption process (Tangsakul, 2023; Tharatipyakul & Pongnumkul, 2021).

On the regulatory side, concerns about privacy, regulatory uncertainty, and lack of trust among stakeholders are significant barriers to blockchain adoption, especially in the financial sector (Yuan & Xie, 2023). Regulatory issues affecting blockchain adoption in finance include the need for a clear regulatory framework and considerations before widespread adoption can occur (Yerram, 2021). Additionally, a lack of substantive policy incentives and public awareness hinders the adoption of blockchain technology (Li et al., 2023).

Organizational and management challenges also play an important role in hindering blockchain implementation. These challenges include changes in organizational culture, lack of

support from upper management, collaboration problems, and the need for new policies to accommodate blockchain technology (Tangsakul, 2023). Additionally, the perception that blockchain technology is still immature and governance challenges pose obstacles for companies wishing to effectively implement and manage blockchain solutions (Zhang et al., 2023). Thus, addressing these technical, regulatory, organizational, and management challenges is critical to facilitating wider adoption of blockchain technology across industries. Overcoming these barriers will require collaborative efforts among stakeholders, advocacy for regulatory clarity, technological advances, and the development of industry-specific standards and policies (Hoti, 2024).

#### 4. Conclusions

This research confirms that blockchain technology is a revolutionary innovation with the potential to transform various sectors, including finance, health, agriculture, and supply chains. Blockchain offers a secure, transparent, and hard-to-change distributed ledger system, which can improve data management, security, and operational efficiency. The evolution of this technology from Bitcoin's inception to a versatile technology shows its transformational potential in revolutionizing business models and reducing transaction costs. Thus, the implementation of blockchain can provide significant solutions to increase transparency, security and efficiency in various industries.

#### 4.1. Implications

The implications of this research include:

- Increased Transparency and Trust: Blockchain technology can increase transparency and trust among stakeholders by providing immutable and verifiable records.
- 2. Operational Efficiency: Blockchain adoption can streamline operational processes, reduce costs, and speed up transactions, which is critical for the financial and supply chain sectors.
- 3. Data Security: Blockchain technology offers superior security solutions through the use of cryptography and decentralization, reducing the risk of data breaches and fraud.
- 4. Business Model Innovation: Blockchain can drive innovation in business models by enabling the creation of new services, such as smart contracts and decentralized financial applications.

# 4.2. Limitations

This research also has several limitations:

- 1. Adoption and Regulation: The main challenges in blockchain implementation are the lack of consistent regulatory standards and varying levels of adoption across industries.
- 2. Implementation Costs: Even though it offers many benefits, the cost of implementing blockchain technology is still relatively high, especially for small and medium-sized organizations.
- 3. Scalability: Blockchain still faces challenges in terms of scalability and transaction speed, which may limit its use in scenarios with high transaction volumes.

#### 4.3. Future Research

For future research, some areas that need further exploration are:

- 1. Regulations and Policies: Further research is needed to understand how regulations and policies can be developed to support widespread blockchain adoption.
- 2. Scalability Improvements: The study of methods to improve the scalability and speed of blockchain transactions can help overcome one of its main obstacles.
- 3. Integration with Other Technologies: Research into how blockchain can be integrated with other technologies such as artificial intelligence and the Internet of Things (IoT) to create more innovative and efficient solutions.
- 4. Industry Case Studies: In-depth empirical studies of blockchain applications in various industries can provide practical insights into the benefits and challenges faced.

By overcoming these limitations and continuing research in this area, blockchain technology has the potential to have a significant and sustainable impact across a wide range of sectors.

#### 5. References

- Abeysekera, M. and Kumarawadu, P. (2022). Analysis of factors influencing blockchain implementation in finance sector in sri lanka. Ho Chi Minh City Open University Journal of Science Economics and Business Administration, 12(2), 3-14. https://doi.org/10.46223/hcmcoujs.econ.en.12.2.2236.2022
- Ahmad, M., Botzkowski, T., Klötzer, C., & Papert, M. (2020). Behind the blackbox of digital business models.. https://doi.org/10.24251/hicss.2020.556
- Alanhdi, A. (2024). A survey on integrating edge computing with ai and blockchain in maritime domain, aerial systems, iot, and industry 4.0. Ieee Access, 12, 28684-28709. https://doi.org/10.1109/access.2024.3367118
- Barrera, J., Trotsyuk, A., Henn, D., Sivaraj, D., Chen, K., Mittal, S., ... & Gurtner, G. (2023). Blockchain, information security, control, and integrity: who is in charge? Plastic & Reconstructive Surgery, 152(4), 751e-758e. https://doi.org/10.1097/prs.0000000000010409
- Bosona, T. and Gebresenbet, G. (2023). The role of blockchain technology in promoting traceability systems in agri-food production and supply chains. Sensors, 23(11), 5342. https://doi.org/10.3390/s23115342
- Burmaoğlu, S., Sarıtas, O., & Şeşen, H. (2020). Ideachain: a conceptual proposal for blockchain-based sti policy development. Foresight, 22(2), 189-204. https://doi.org/10.1108/fs-07-2019-0067
- Chen, X. (2024). A survey of consortium blockchain and its applications. Cryptography, 8(2), 12. https://doi.org/10.3390/cryptography8020012
- Choori, A. (2023). Strategic management in the digital age: a review of decision-making frameworks. IJIMOB, 3(2), 21-32. https://doi.org/10.61838/kman.ijimob.3.2.4
- Farayola, O. (2024). Revolutionizing banking security: integrating artificial intelligence, blockchain, and business intelligence for enhanced cybersecurity. Finance & Accounting Research Journal, 6(4), 501-514. https://doi.org/10.51594/farj.v6i4.990
- Gupta, S. (2024). Improving the end to end protection in e-voting using bvm blockchain based e-voting mechanism.. https://doi.org/10.21203/rs.3.rs-3973544/v1
- Hoti, A. (2024). Blockchain auditing dilemma: exploring hesitation among audit firms. Multidisciplinary Reviews, 7(6), 2024107. https://doi.org/10.31893/multirev.2024107
- Iacoviello, G. and Bruno, E. (2023). Exploring a new business model for lending processes in the banking sector using blockchain technology: an italian case study. IJDAR, 47-68. https://doi.org/10.4192/1577-8517-v23 3

- Jiang, X. (2024). A review of financial services research based on blockchain technology. Advances in Economics Management and Political Sciences, 92(1), 124-130. https://doi.org/10.54254/2754-1169/92/20231231
- Jiao, Y. (2024). The impact of blockchain technology: cross-border payments, digital currencies, and financial risks. Advances in Economics Management and Political Sciences, 85(1), 8-17. https://doi.org/10.54254/2754-1169/85/20240828
- Kawiana, I. (2023). Digital leadership: building adaptive organizations in the digital age. Jurnal Multidisiplin Sahombu, 3(01), 170-179. https://doi.org/10.58471/jms.v3i01.2709
- Korkuc, C. (2024). Blockbox: blockchain based black box designing and modeling. Concurrency and Computation Practice and Experience, 36(13). https://doi.org/10.1002/cpe.8057
- Li, J., Li, Y., & Lai, K. (2023). Blockchain adoption and application in closed-loop production under information asymmetry. International Transactions in Operational Research, 31(6), 3650-3668. https://doi.org/10.1111/itor.13283
- Li, W., Cao, M., Wang, Y., Tang, C., & Lin, F. (2020). Mining pool game model and nash equilibrium analysis for pow-based blockchain networks. Ieee Access, 8, 101049-101060. https://doi.org/10.1109/access.2020.2997996
- Lu, S. and Yu, H. (2022). Research on digital business model innovation based on emotion regulation lens. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.842076
- Ma, Y. (2024). Exploring innovative business models in cross-border e-commerce under digital economy. Frontiers in Business Economics and Management, 13(1), 205-209. https://doi.org/10.54097/xhccmn82
- Mackey, T., Kuo, T., Gummadi, B., Clauson, K., Church, G., Grishin, D., ... & Palombini, M. (2019). 'fit-for-purpose?' challenges and opportunities for applications of blockchain technology in the future of healthcare. BMC Medicine, 17(1). https://doi.org/10.1186/s12916-019-1296-7
- Maheshwari, V. and Mani, P. (2023). Vulnerabilities and attacks on the blockchain software engineering landscape. Applied and Computational Engineering, 6(1), 422-427. https://doi.org/10.54254/2755-2721/6/20230851
- Mbaye, M. (2021). Sustainability of cryptocurrency in blockchain technology for business development in african countries. International Journal of Business Ecosystem and Strategy (2687-2293), 3(4), 30-37. https://doi.org/10.36096/ijbes.v3i4.297
- Naher, K. (2023). Exploring the influence of blockchain in the financial services: quick assessment of its applications across various financial domains. Financial Statistical Journal, 6(1). https://doi.org/10.24294/fsj.v6i1.2228
- Parida, V., Sjödin, D., & Reim, W. (2019). Reviewing literature on digitalization, business model innovation, and sustainable industry: past achievements and future promises. Sustainability, 11(2), 391. https://doi.org/10.3390/su11020391
- Prewett, K., Prescott, G., & Phillips, K. (2019). Blockchain adoption is inevitable—barriers and risks remain. Journal of Corporate Accounting & Finance, 31(2), 21-28. https://doi.org/10.1002/jcaf.22415
- Raharjo, I. (2024). The impact of digital transformation on human resource development in the online business paradigm. Malcom Indonesian Journal of Machine Learning and Computer Science, 4(2), 580-586. https://doi.org/10.57152/malcom.v4i2.1281
- Rajiah, R. (2023). Evolution of blockchain technology in the financial sector: an empirical analysis. tjjpt, 44(4), 3781-3793. https://doi.org/10.52783/tjjpt.v44.i4.1535
- Renduchintala, T., Alfauri, H., Yang, Z., Pietro, R., & Jain, R. (2022). A survey of blockchain applications in the fintech sector. Journal of Open Innovation Technology Market and Complexity, 8(4), 185. https://doi.org/10.3390/joitmc8040185
- Saračević, M., Wang, N., Zukorlic, E., & Bećirović, S. (2021). New model of sustainable supply chain finance based on blockchain technology. AJBOR, 61-76. https://doi.org/10.54216/ajbor.030201

- Sayudin, S. (2023). Increasing business effectiveness through the implementation of an integrated digital marketing strategy. Journal of World Science, 2(11), 1908-1913. https://doi.org/10.58344/jws.v2i11.478
- Shoetan, P. (2024). Blockchain's impact on financial security and efficiency beyond cryptocurrency uses. International Journal of Management & Entrepreneurship Research, 6(4), 1211-1235. https://doi.org/10.51594/ijmer.v6i4.1032
- Singh, P. (2022). Navigating the digital wave: transformative strategies in modern business with the integration of artificial intelligence (ai) and machine learning (ml). International Journal of Computing and Artificial Intelligence, 3(2), 78-85. https://doi.org/10.33545/27076571.2022.v3.i2a.77
- Sudaryono, S., Aini, Q., Lutfiani, N., & Hanafi, F. (2020). Application of blockchain technology for ilearning student assessment. Ijccs (Indonesian Journal of Computing and Cybernetics Systems), 14(2), 209. https://doi.org/10.22146/ijccs.53109
- Tangsakul, M. (2023). Identification and analysis of barriers to the adoption of blockchain technology in the logistics industry.. https://doi.org/10.46254/ap04.20230051
- Tharatipyakul, A. and Pongnumkul, S. (2021). User interface of blockchain-based agri-food traceability applications: a review. Ieee Access, 9, 82909-82929. https://doi.org/10.1109/access.2021.3085982
- Veldhoven, Z. and Vanthienen, J. (2021). Digital transformation as an interaction-driven perspective between business, society, and technology. Electronic Markets, 32(2), 629-644. https://doi.org/10.1007/s12525-021-00464-5
- Verma, S. (2023). Enhancing security in blockchain technology: a comprehensive study. jrtdd. https://doi.org/10.53555/jrtdd.v6i8s.2910
- Wang, W. (2023). Secure image retrieval and sharing technologies for digital inclusive finance: methods and applications. Traitement Du Signal, 40(5), 2079-2086. https://doi.org/10.18280/ts.400525
- Wenhua, Z., Qamar, F., Abdali, T., Hassan, R., Jafri, S., & Nguyễn, Q. (2023). Blockchain technology: security issues, healthcare applications, challenges and future trends. Electronics, 12(3), 546. https://doi.org/10.3390/electronics12030546
- Wu, J. (2023). A new mode of enterprise economic management utilizing blockchain technology in the digital economy era.. https://doi.org/10.4108/eai.19-5-2023.2334370
- Xue, S. (2023). Collaborative effectiveness evaluation model between different business segments under closed-loop management system of large power grid enterprises., 38-46. https://doi.org/10.2991/978-94-6463-256-9\_5
- Yerram, S. (2021). The role of blockchain technology in enhancing financial security amidst digital transformation. Asian Business Review, 11(3), 125-134. https://doi.org/10.18034/abr.v11i3.69411
- Yuan, X. and Xie, L. (2023). A security perspective of blockchain technology in the financial sector.. https://doi.org/10.4108/eai.18-11-2022.2327110
- Zhang, Z., He, W., Shetty, S., Tian, X., He, Y., Behl, A., ... & Veetil, A. (2023). Understanding governance and control challenges of blockchain technology in healthcare and energy sectors: a historical perspective. Journal of Management History, 30(2), 219-242. https://doi.org/10.1108/jmh-12-2022-0086