Education Studies and Teaching Journal (EDUTECH)

Vol 1 (3) 2024 : 401-414

The Impact of Artificial Intelligence on Personalized Learning: A Systematic Literature Review

Dampak Kecerdasan Buatan pada Pembelajaran yang Dipersonalisasi: Tinjauan Literatur Sistematis

Salis Irvan Fuadi

Universitas Sains Al-Qur'an *irvan@unsiq.ac.id

*Corresponding Author

ABSTRACT

The use of artificial intelligence (AI) in higher education is increasing, but understanding of its impact on personalized learning remains limited. This research aims to systematically examine how AI influences personalized learning and to explore the challenges and opportunities that exist. Through a systematic literature review method, the results show that AI increases student effectiveness, engagement, and motivation, but also faces challenges related to data privacy and acceptance of the technology by educators. These findings have important implications for stakeholders in designing educational strategies that are more adaptive and responsive to individual needs.

Keywords: Artificial Intelligence, Personalized Learning, Higher Education, Systematic Literature Review, Educational Technology.

ABSTRAK

Penggunaan kecerdasan buatan (AI) dalam pendidikan tinggi semakin meningkat, namun pemahaman tentang dampaknya terhadap pembelajaran yang dipersonalisasi masih terbatas. Penelitian ini bertujuan untuk mengkaji secara sistematis bagaimana AI mempengaruhi pembelajaran yang dipersonalisasi dan untuk mengeksplorasi tantangan serta peluang yang ada. Melalui metode tinjauan literatur sistematis, hasil menunjukkan bahwa AI meningkatkan efektivitas, keterlibatan, dan motivasi mahasiswa, tetapi juga menghadapi tantangan terkait privasi data dan penerimaan teknologi oleh pendidik. Temuan ini memiliki implikasi penting bagi pemangku kepentingan dalam merancang strategi pendidikan yang lebih adaptif dan responsif terhadap kebutuhan individu.

Kata Kunci: Kecerdasan Buatan, Pembelajaran yang Dipersonalisasi, Pendidikan Tinggi, Tinjauan Literatur Sistematis, Teknologi Pendidikan.

1. Introduction

The integration of artificial intelligence (AI) in higher education has the potential to significantly improve teaching methods and learning experiences. One of the most promising applications of AI is in adaptive learning, which personalizes educational content to each student's unique needs. Research shows that AI-assisted personalized learning approaches can improve student engagement and learning outcomes (Tlili et al., 2019; Abas, 2023; Jian, 2023). For example, personalized educational games based on individual learning styles have been shown to increase learning achievement, demonstrating the effectiveness of customized educational experiences (Tlili et al., 2019). AI's ability to analyze large data sets allows educators to gain deep insights into student preferences and learning styles. This data-driven approach enables the development of personalized learning pathways, which can adapt in real-time to student performance and engagement levels. The use of machine learning algorithms in educational environments also facilitates timely feedback, which is important for creating interactive and engaging learning environments (Wang, 2017; Khan & Alqahtani, 2020; Zhang et al., 2022). For example, the application of big data in education has been widely explored, with research highlighting its role in improving the educational process through data

mining and analytics (Khan & Alqahtani, 2020; Williamson, 2017). Additionally, Al-driven recommendation algorithms can further enhance personalized learning by tracking students' knowledge development and dynamically adjusting content (Zhang et al., 2022).

However, despite these promising advances, there remains a gap in understanding how Al can support adaptive learning strategies that focus on individual learning styles. Although the literature emphasizes the potential of AI to revolutionize education, further research is needed regarding its practical applications as well as the challenges it faces (Abas, 2023; Jian, 2023; Goel & Joyner, 2017). The integration of AI into personalized learning systems requires careful ethical considerations, as well as the development of a robust framework to guide its implementation (Jian, 2023; Ji, 2024). In conclusion, the intersection of AI and education presents a transformative opportunity to enhance personalized learning experiences. However, continued research is essential to fully unlock the potential of AI in adaptive learning and overcome the challenges that accompany its integration in educational practices. Although the use of AI in education has received increasing attention, a deep understanding of how this technology can concretely facilitate adaptive learning strategies that suit students' learning styles is still very limited. Much existing research tends to focus on the technical aspects of AI without exploring in depth its implications for individual learning experiences. Some emerging and unanswered questions include: How can AI recognize and adapt to different learning styles among students? What are the most effective adaptive learning strategies when integrated with AI? And, how can the application of AI in an educational context contribute to improving student learning outcomes? This gap highlights the importance of further research to understand the role of AI in creating more personalized and effective learning experiences.

This research aims to explore and analyze the contribution of AI in facilitating adaptive learning strategies that suit diverse learning styles in higher education. Specifically, this research includes several main objectives, namely identifying learning styles, analyzing how AI can be used to recognize and understand various student learning styles, and evaluating the differences between these learning styles. In addition, this research aims to investigate various adaptive learning strategies developed with the help of AI and measure their impact on learning outcomes and student engagement. This research also focuses on identifying challenges in applying AI in the context of adaptive learning and exploring opportunities that can be exploited to improve learning effectiveness in higher education.

This study is expected to make a significant contribution to educational literature, especially in the context of using AI to improve adaptive learning. By exploring how AI can accommodate various student learning styles, this research will provide new insights that educators and curriculum developers can use to design more inclusive and responsive learning experiences. In addition, it is hoped that the results of this research can become a basis for the development of better educational policies and effective teaching practices. Thus, this research not only contributes to academic understanding, but also offers practical solutions to the challenges faced in higher education in this digital era.

2. Methods

2.1. Research Design

This research uses a systematic literature review (SLR) design to explore the impact of artificial intelligence (AI) in personalized learning. SLR is a systematic and transparent method for identifying, evaluating, and synthesizing relevant research results, allowing researchers to gain a comprehensive understanding of the topic being researched. Through this approach, the research aims to collect and analyze relevant studies regarding the use of AI in adaptive learning strategies, so as to identify trends, gaps and potential areas for further research.

2.2. Literature Search Strategy

The literature search strategy was carried out through several key steps to ensure appropriate inclusion and exclusion of studies. Searches were conducted in leading academic databases, including Scopus, Web of Science, ERIC, and Google Scholar, using combinations of relevant keywords. Keywords used included "Artificial Intelligence," "Personalized Learning," "Adaptive Learning," "Higher Education," and "Learning Styles." Boolean combinations (AND/OR) are applied to expand or narrow the search as needed. In this process, the researcher also considered the use of synonymous terms and variations to ensure comprehensive coverage of the existing literature. Furthermore, the publication period for the studies sought was limited from 2010 to 2024 to cover the latest developments in AI research and education. Researchers also focused their search on articles published in peer-reviewed journals to ensure the quality and validity of the data obtained.

2.3. Inclusion and Exclusion Criteria

Inclusion and exclusion criteria were set to ensure that only the most relevant and high-quality studies were included in the analysis.

Inclusion criteria include:

- Study Type: Studies that focus on the use of AI in the context of personalized and adaptive learning.
- Population: Research involving students in higher education.
- Language: Studies published in English.
- Quality: Only articles published in indexed and peer-reviewed journals will be considered.

Meanwhile, exclusion criteria include:

- Learning Type: Studies that do not explicitly address personalized or adaptive learning.
- Non-Academic Populations: Research that does not involve higher education students.
- Non-Peer-Reviewed Documents: Articles, reports, or documents that have not undergone a peer-review process.

2.4. Data Extraction and Synthesis

After identification of relevant literature, a data extraction process was carried out to gather important information from each included study. Extracted data includes:

- General Information: Title, author, year of publication, and journal in which it was published.
- Research Methods: Description of the methodology used, including research design, sample, and data analysis techniques.
- Key Findings: A summary of the key results and contributions of each study, as well as their relevance to the theme of AI and personalized learning.
- Study Limitations: Notes regarding limitations identified by the author to clarify the context of the findings.

The synthesis process is carried out using thematic analysis techniques, where researchers identify patterns and themes that emerge from the extracted data. Findings from different studies are compared and analyzed to find similarities, differences, and existing trends. It aims to build a clear picture of how AI is applied in personalized learning and its impact on the student learning experience.

2.5. Quality Assessment

To ensure the reliability and validity of the included studies, researchers applied appropriate quality assessment tools. The quality assessment criteria used include aspects such as research design, methodological appropriateness, data analysis, and generalization of results. A quality assessment was performed for each included study, and the results will

influence the interpretation and synthesis of the data. With this systematic approach, the research aims to provide a deep and comprehensive understanding of the impact of AI in personalized learning in higher education, as well as to identify practical implications and future research directions.

3. Results

3.1. Overview of Included Studies

At this stage, the research results include a summary of the studies that have been identified and included in this systematic review. A total of [number] of studies that meet the inclusion criteria 59 of studies identified through a literature search. Of these, [the number of] studies came from leading journals indexed in the Scopus and Web of Science databases, with publications covering the period between 2010 to 2024. The selected studies had diverse methodological approaches, including qualitative, quantitative, and mixed. Further details regarding study characteristics, such as design, sample size, and educational context, were noted to provide a comprehensive picture of the diversity of existing research. This data can be presented in the form of a table showing details of each study, including the author, year of publication, methodology used, and the main focus of each study.

3.2. Key Themes Identified

Through analysis of the extracted data, several key emerging themes related to the impact of AI in personalized learning were identified. The integration of Artificial Intelligence (AI) in education shows great potential in identifying and adapting learning approaches to suit various student learning styles, such as visual, auditory and kinesthetic. AI systems can effectively analyze student data to customize educational experiences based on individual learning preferences, thereby improving the overall learning process.

The role of AI in education covers various aspects, including personalized learning, adaptive systems, and assessment. A systematic review highlights that AI applications in higher education have largely focused on these aspects, with an emphasis on the importance of creating learning environments that suit the needs of diverse students ("Artificial Intelligence Tools in Foreign Language Teaching in Higher Education Institutions," 2023). This adaptive capability is critical because it allows educators to implement strategies that suit students' unique learning styles, ultimately increasing engagement and retention of information.

Research has shown that students have a variety of learning styles, many of whom demonstrate multimodal preferences. For example, a study involving medical students revealed that most students preferred a multimodal learning style, with the auditory component being a prominent one (Samarakoon et al., 2013). These findings emphasize the importance of utilizing AI in education systems to accurately recognize students' learning preferences. AI-based systems can analyze student behavior data and learning patterns to dynamically predict and adjust learning approaches according to their learning styles (Pardamean et al., 2022; Dung & Florea, 2013). This system not only enhances the learning experience, but also supports better academic performance by aligning teaching methods with students' preferred learning modalities ("Analysis of the Impact of Artificial Intelligence on College Students' Learning," 2023).

Additionally, the development of intelligent teaching systems (ITS) that utilize AI to predict learning styles is a significant advance in this field. These ITS systems use conversational interfaces to engage students and customize learning in real-time, mimicking interactions that might occur with a human tutor (Latham et al., 2012; Crockett et al., 2017). This approach not only personalizes the learning experience, but also encourages deeper understanding of the material because students are more likely to engage with the content presented according to their learning style (Jia & Zhang, 2021).

In conclusion, the application of AI in detecting and accommodating learning styles represents a transformative change in educational practice. By leveraging AI capabilities, educators can create more inclusive and effective learning environments that meet the needs of diverse students. This not only improves individual learning outcomes, but also promotes a more engaging and responsive educational experience.

The implementation of adaptive learning systems, especially through the use of Artificial Intelligence (AI), has attracted great attention in educational research. Adaptive learning refers to educational technology that adapts content and feedback based on individual student performance, thereby personalizing their learning experience. Intelligent Tutoring Systems (ITS) are one of the main applications of this concept, leveraging AI to provide instruction and support tailored to each student's needs. Research shows that ITS can significantly improve learning outcomes by adapting teaching approaches to the unique needs of each student. For example, Yan and Song outlined how ITS uses AI technology to facilitate personalized instruction, enabling educational experiences that are better suited to students' individual characteristics and needs (Yan & Song, 2015). This finding is supported by Boulay, who highlights that AI-based systems can maximize learning efficiency by creating adaptive learning environments that respond to student interactions (Boulay, 2019). Furthermore, research by Mirata and Bergamin emphasizes the importance of organizational readiness and stakeholder acceptance in the successful implementation of adaptive learning systems in higher education (Mirata & Bergamin, 2023).

Practical applications of adaptive learning can also be seen on various e-learning platforms. Watson et al. described the development of an adaptive e-learning system that integrates with Moodle, enabling course design that adapts material based on student performance (Watson et al., 2010). Similarly, research by Ghadirli and Rastgarpour describes adaptive web-based tutoring that uses expert systems to tailor the learning experience to each learner's profile (Ghadirli & Rastgarpour, 2013). This implementation demonstrates the flexibility and effectiveness of adaptive learning technology in a variety of educational contexts. Additionally, the literature shows that adaptive learning can bridge learning gaps and improve student performance. Cavanagh et al. noted that although adaptive learning is based on student-centered, mastery-based learning theory, more empirical evidence is still needed to prove its effectiveness in improving student learning outcomes (Cavanagh et al., 2020). This was also emphasized by Dziuban et al., who encouraged further research to explore how adaptive systems can effectively reduce learning disparities among students (Cavanagh et al., 2020). In conclusion, the integration of AI in adaptive learning systems, especially through ITS, shows great potential in improving educational outcomes. The system's ability to provide personalized feedback and adapt to individual learning styles is supported by numerous studies, demonstrating its potential to transform educational practices and increase student engagement and achievement.

The integration of artificial intelligence (AI) in educational environments has been shown to significantly increase student engagement and motivation. Numerous studies document the positive effects of AI tools on students' attitudes, engagement levels, and overall learning outcomes. For example, a study published in *International Research Journal of Modernization in Engineering Technology and Science* showed that the use of AI tools resulted in a 30% increase in students' attention span, demonstrated through longer gaze durations and more frequent positive facial expressions during sessions with an AI tutor compared to traditional methods ("IMPACT OF ARTIFICIAL INTELLIGENCE ON STUDENT ATTITUDES, ENGAGEMENT, AND LEARNING", 2024). These results are in line with existing literature that emphasizes the role of technology-based learning in increasing student engagement. Additionally, a meta-analysis by Wu and Yu suggests that the novelty of AI chatbots can increase students' interest and motivation, especially during short-term interventions (Wu & Yu, 2023). However, they note that this novelty effect may diminish over time, indicating that

although initial engagement may increase, sustained motivation requires continued innovation in AI applications (Wu & Yu, 2023). This is reinforced by research that emphasizes the importance of personalized learning experiences through AI, which can adapt to students' needs and learning styles, thereby encouraging deeper engagement and motivation ("The Role of AI in Improving Student Learning Outcomes: Evidence in Vietnam", 2024; , Abbas et al., 2023).

The potential of AI to create immersive and interactive learning experiences is also apparent in the context of social studies education. Grubaugh's research illustrates how AI-based simulations and gamification scenarios can transform traditional learning into dynamic experiences that inspire curiosity and engagement with historical material (Grubaugh, 2024). Such interactive methods not only increase engagement but also improve knowledge retention and learning outcomes, as evidenced by studies on AI-based gamification (Alenezi, 2023). Furthermore, the role of AI in encouraging self-regulation among students has been explored in the context of blended learning. Wu et al. found that AI interventions can help students overcome learning challenges more effectively, leading to increased behavioral engagement and proactive learning behavior (Wu et al., 2023). This is especially relevant in higher education, where the integration of AI tools is proven to shift the paradigm of student engagement, as noted in studies focusing on the impact of AI in higher education environments (Ezeoguine, 2024).

Overall, the evidence strongly supports the assertion that AI can significantly increase student engagement and motivation through personalized learning experiences, interactive content, and innovative pedagogical strategies. The continued development and application of AI technology in education promises further improvements in student outcomes and engagement. The implementation of Artificial Intelligence (AI) in personalized learning offers a variety of benefits, but also comes with significant challenges and limitations that need to be addressed. Key challenges include data privacy concerns, the need for a robust technological infrastructure, and resistance on the part of educators.

Data Privacy is a critical concern in the application of AI technology in educational settings. AI systems often require access to large amounts of personal data to operate effectively, making the risk of data breaches and misuse a pressing issue. Several studies highlight that the collection and analysis of students' sensitive information can give rise to ethical dilemmas, especially related to issues of consent and data ownership (Nasir, 2024; Ayeni, 2024). Additionally, algorithmic biases can emerge from the data used to train AI systems, potentially leading to unequal educational outcomes (Ayeni, 2024; Onesi-Ozigagun, 2024). These ethical challenges require strict data protection policies to keep student information secure.

Beyond privacy concerns, successful implementation of AI in education also depends on the availability of adequate technological infrastructure. AI tool integration requires sophisticated hardware and software, coupled with reliable internet connectivity. Research shows that without a solid technological foundation, the potential benefits of AI cannot be fully realized (Nurjanah, 2024; Tang, 2024). Additionally, educational institutions need to invest time and resources to train educators in using this technology effectively. Lack of familiarity with AI tools can create resistance among teaching staff (Aghaziarati, 2023). This resistance may arise due to fear of job replacement or threats to traditional teaching methods, which may hinder the adoption of innovative teaching practices.

Resistance from educators is also influenced by the need for cultural change within educational institutions. Educators need to accept AI as a companion tool, not as a substitute for human interaction in the learning process. AI integration should enrich, not detract from, the interpersonal dynamics of teaching (Gupta, 2024). Therefore, creating a collaborative environment where educators feel supported in their use of AI technology is critical to overcoming resistance and maximizing the effectiveness of personalized learning initiatives. In

conclusion, although AI has the potential to transform personalized learning through educational experiences that better suit individual needs, addressing the challenges of data privacy, technological infrastructure, and resistance from educators is critical to its successful implementation. A holistic approach that considers these factors will be necessary to harness the full potential of AI in education.

3. Summary of Findings

A summary of findings from the reviewed studies provides a clear picture of the impact of AI in personalized learning. Overall, the results show that the integration of AI in higher education has the potential to improve learning effectiveness, support more adaptive teaching, and increase student engagement. Tables and graphs can be used to present a summary of findings, illustrating how different studies contribute to a better understanding of the key themes identified.

The research results show that the application of AI in the context of personalized learning can significantly improve student academic performance. Students who take part in AI-based learning programs show better academic achievements compared to traditional learning methods. In addition, students also reported higher levels of satisfaction with their learning experience, indicating that AI can increase engagement and satisfaction during the learning process. Furthermore, AI-based adaptive learning strategies are proven to be able to contribute to more optimal learning outcomes, because AI can adapt teaching methods to individual student needs and abilities. This makes AI an innovative solution to support a more effective and efficient learning process.

4. Discussions

4.1. Interpretation of Findings

In this section, the researcher discusses the interpretation of the findings identified in this study. The research results show that the integration of artificial intelligence (AI) in personalized learning significantly increases the effectiveness of the educational experience in higher education. Artificial Intelligence (AI) has emerged as a transformative force in education, especially in personalizing the learning experience to meet the unique needs of each student. These adaptive capabilities align closely with constructivist learning theory, which posits that active engagement and interaction between students and educational content is essential to achieving deep learning outcomes. Through AI, educational content can be tailored to each student's learning patterns, cognitive style, and performance history, thereby improving their academic results and overall learning satisfaction.

Multiple studies show the positive impact of Al-based personalized learning platforms on student engagement and knowledge retention. For example, Abbas et al. highlights how Al algorithms can analyze student data to customize educational content, ultimately improving academic performance (Abbas et al., 2023). Likewise, Rasheed's comprehensive review of the role of Al in personalized learning not only emphasizes its positive effects on student learning outcomes, but also the challenges in its implementation (Rasheed, 2023). Namjoo's study of self-directed learning through Al-based tools also supports these findings, by showing that the level of engagement in self-directed learning increases when students interact with Al-based resources that actively support and reinforce learning goals (Namjoo, 2023).

Furthermore, the constructivist theory that encourages active student participation is strengthened by Chen's findings regarding how constructivist principles can be applied effectively in educational practice through AI (Chen, 2023). This synergy shows that AI not only functions as a personalization tool, but also creates an environment conducive to constructivist learning, where students are encouraged to explore, interact, and actively build their own knowledge. Additionally, AI applications have been shown to increase students' self-efficacy, as demonstrated by Nazari et al.'s research, which found that AI interventions positively

influenced language learners' academic emotions and self-confidence (Nazari et al., 2021). In conclusion, the integration of AI in education supports constructivist learning theories by encouraging active engagement and personalized learning experiences. Research consistently shows that AI can enrich the educational journey by tailoring content to meet each student's needs, as well as overall improving their understanding and academic performance.

Recent research shows that artificial intelligence (AI) is increasingly able to identify and adapt to different student learning styles, thereby creating more inclusive educational environments. The AI-based system leverages data analytics to analyze student engagement and performance, enabling personalization of learning paths tailored to individual needs. This adaptability is especially important in higher education, where students' backgrounds and learning preferences vary. Studies have proven that AI can enhance personalized learning experiences by tailoring content delivery according to each student's strengths and weaknesses, ultimately increasing their engagement and motivation (Akavova, 2023; Murtaza et al., 2022; Pendy, 2023).

Furthermore, the integration of AI in education is in line with the principles of personalized learning and prioritizes a student-centered approach that is responsive to individual needs. The AI system continuously monitors student progress and adjusts teaching strategies as needed, creating a dynamic learning environment that can significantly improve academic performance. Research shows that such systems not only improve educational outcomes, but also contribute positively to student well-being by reducing the anxiety that often arises in traditional, uniform educational models ("The Impact of Artificial Intelligence on Student Attitudes, Engagement, and Learning", 2024; Nguyen, 2024). AI's ability to provide personalized feedback is a crucial factor in maintaining student engagement, which is reflected in the increased attention span of students using AI-based tools compared to traditional methods.

Furthermore, the application of AI in personalized learning represents a significant advancement in educational practice. By integrating constructivist theory and leveraging data-driven insights, AI not only enriches the overall learning experience but also makes it more inclusive and effective. As the adoption of AI technology increases in educational institutions, the potential to improve academic outcomes and enrich learning experiences continues to grow. These developments open up opportunities to create a more responsive educational landscape, where AI not only supports personalized learning but also meets the needs of diverse students in an ever-changing educational environment (Akavova, 2023; Murtaza et al., 2022; Pendy, 2023). In conclusion, the integration of AI in education offers transformative potential, especially in the context of personalized learning. By leveraging AI's ability to adjust to individual learning styles and provide appropriate feedback, educators can create more inclusive and effective learning environments. As research in this area develops, it is clear that AI will play a critical role in shaping the future of education, improving academic performance, and increasing student engagement (Akavova, 2023; "The Impact of Artificial Intelligence on Student Attitudes, Engagement, and Learning", 2024; Nguyen , 2024).

4.2. Comparison with Existing Literature

This discussion also includes comparisons with existing literature. The integration of Artificial Intelligence (AI) in education has attracted significant attention, primarily because of its potential to enhance personalized learning experiences. Artificial Intelligence (AI) has emerged as a transformational force in the field of education, significantly improving student motivation, engagement and academic outcomes. Popenici and Kerr (2017) highlight the capacity of AI to revolutionize the dynamics of teaching and learning in higher education through educational experiences that are personalized and tailored to the needs of each student. This is further supported by research by Zhao (2023), which states that AI-based solutions can accommodate various learning styles and tempos, thereby improving overall

learning outcomes. Additionally, Abbas et al. (2023) show that AI can facilitate adaptive learning experiences, which is critical for meeting diverse student needs and ultimately improving educational performance.

Furthermore, interactions between students and teachers can be significantly improved through AI technology. Seo et al. (2021) explain how AI can support more meaningful interactions in online learning environments, enabling targeted support to address specific challenges students face. These interactions are critical to maintaining student engagement and motivation, especially in distance learning contexts where personal connectedness may be difficult to establish. Despite promising progress, the application of AI in education is not without challenges. One major concern is data privacy, as AI systems often require the collection and analysis of students' personal information. Luan et al. (2020) emphasize the need for a careful approach in AI implementation, taking into account ethical aspects and consensus to address privacy concerns. Furthermore, Rasheed (2023) notes that resistance from educators to the adoption of new technologies may hinder the effective implementation of AI in personalized learning environments. These barriers highlight the need for comprehensive training and support for educators to facilitate a smoother transition to AI-enhanced teaching methods.

Ethical considerations in the use of AI in education are also very important. Balta Ke (2023) raises ethical challenges related to AI in educational research, emphasizing the importance of responsible practices to maintain academic integrity and protect student privacy. Yousuf (2023) supports this view, highlighting the importance of ensuring that AI tools meet the needs of different types of learners, especially marginalized groups, while considering the ethical implications of their use. In conclusion, although AI offers great opportunities to improve personalized learning experiences, challenges such as data privacy and educator resistance require further research. Future studies need to focus on developing frameworks that can address these challenges, ensuring that AI technologies are implemented responsibly and effectively in educational settings.

4.3. Implications for Practice

The findings from this research have important implications for educational practice. The use of AI in personalized learning opens up opportunities to develop curricula that are more adaptive and responsive to student needs. By introducing AI-based learning systems, higher education institutions can provide a more satisfying and effective learning experience, which in turn can increase student retention. Additionally, the importance of training educators in the use of AI tools was also emphasized. Institutions need to provide adequate resources and training so that educators feel comfortable and able to utilize this technology optimally. This will ensure that teaching using AI does not simply follow trends, but also focuses on improving the overall quality of education.

4.4. Limitations of the Study

In discussing the results, it is important to note several limitations of this study. First, although this review includes a diverse range of studies, not all relevant studies may have been identified in the literature search. This can lead to publication bias, where only studies with positive results are more likely to be published. Second, methodological differences among the included studies may influence the conclusions drawn. For example, some studies use outcome measures that focus on academic achievement, while others focus more on affective aspects such as motivation and satisfaction. This may cause difficulties in directly comparing results.

5. Conclusions

5.1. Summary of Key Findings

This section provides a comprehensive summary of the main findings identified in this review. Overall, this systematic literature review shows that artificial intelligence (AI) has a significant and positive impact on personalized learning in the context of higher education. One of the main findings is the increase in learning effectiveness. Research shows that the application of AI enables analysis of student data to tailor educational content to individual learning styles. This approach produces a more tailored and relevant learning experience for each student, which contributes to improved academic outcomes. Additionally, AI has been proven to increase student engagement and motivation. The study revealed that students who learned through Al-powered adaptive systems reported higher levels of engagement and a more satisfying learning experience. This improvement is important in creating a conducive learning environment, especially for students with diverse learning needs. However, despite the many benefits identified, the research also highlights several challenges in implementation, including data privacy issues, the need for adequate technological infrastructure, and the importance of training for educators to use AI tools effectively. These challenges show that there is a need for a mature and comprehensive approach in implementing AI in the educational environment so that the benefits can be optimized and the risks can be minimized.

5.2. Implications for Stakeholders

This section highlights the important implications of the findings for various stakeholders in education, such as educational institutions, educators, and technology developers. For educational institutions, understanding the potential of AI in supporting personalized learning encourages them to allocate resources in developing and implementing effective AI-based learning systems. This investment not only supports the quality of learning, but also increases the competitiveness of institutions in providing educational services that are adaptive to student needs. On the other hand, educators also need to be equipped with adequate training to utilize this technology in the teaching process. The training aims to improve educators' abilities to use AI systems and develop skills to analyze and interpret the resulting data. In this way, educators can provide constructive feedback and support student learning more effectively.

For technology developers, collaboration with educators and researchers is very important to create AI solutions that truly meet educational needs. This includes user-friendly interface design as well as the ability to easily integrate the technology into existing curricula. This collaboration will ensure that the AI technology developed is not only technically advanced, but also relevant and useful in the broader educational context.

5.3. Limitations and Future Directions

This section emphasizes the limitations of this study. Although the findings show great potential, the limited study scope and research variety may affect the generalizability of the results obtained. For example, limitations in the educational contexts investigated, as well as limited variations in AI implementation in higher education, mean that the results of this study do not fully cover other levels of education.

For future research, several directions that could be explored include, first, expanding the research context to include primary and secondary education. In this way, more understanding will be gained about how AI can contribute to various levels of education, so that the findings can be applied more widely. Second, long-term or longitudinal studies can be conducted to evaluate the impact of AI in personalized learning on students' academic and career development over a longer period of time. Third, studies in a multicultural context are very important to explore how AI is accepted and effective in various cultures and countries, so

that understanding of the variations in the application of this technology becomes richer and more comprehensive.

6. References

- Abas, M. (2023). Chatgpt and personalized learning: opportunities and challenges in higher education. International Journal of Academic Research in Business and Social Sciences, 13(12). https://doi.org/10.6007/ijarbss/v13-i12/20240
- Abbas, N., Imran, A., Manzoor, R., Hussain, T., & Hussain, M. (2023). Role of artificial intelligence tools in enhancing students' educational performance at higher levels. Journal of Artificial Intelligence Machine Learning and Neural Network, (35), 36-49. https://doi.org/10.55529/jaimlnn.35.36.49
- Aghaziarati, A. (2023). Artificial intelligence in education: investigating teacher attitudes. aitechbesosci, 1(1), 35-42. https://doi.org/10.61838/kman.aitech.1.1.6
- Akavova, A. (2023). Adaptive learning and artificial intelligence in the educational space. E3s Web of Conferences, 451, 06011. https://doi.org/10.1051/e3sconf/202345106011
- Akgün, S. and Greenhow, C. (2021). Artificial intelligence in education: addressing ethical challenges in k-12 settings. Ai and Ethics, 2(3), 431-440. https://doi.org/10.1007/s43681-021-00096-7
- Alenezi, A. (2023). Teacher perspectives on ai-driven gamification: impact on student motivation, engagement, and learning outcomes. Information Technologies and Learning Tools, 97(5), 138-148. https://doi.org/10.33407/itlt.v97i5.5437
- Ayeni, O. (2024). Ai in education: a review of personalized learning and educational technology. GSC Advanced Research and Reviews, 18(2), 261-271. https://doi.org/10.30574/gscarr.2024.18.2.0062
- Balta, N. (2023). Ethical considerations in using ai in educational research., 2(1), 14205. https://doi.org/10.51853/jorids/14205
- Boulay, B. (2019). Escape from the skinner box: the case for contemporary intelligent learning environments. British Journal of Educational Technology, 50(6), 2902-2919. https://doi.org/10.1111/bjet.12860
- Cavanagh, T., Chen, B., Lahcen, R., & Paradiso, J. (2020). Constructing a design framework and pedagogical approach for adaptive learning in higher education: a practitioner's perspective. The International Review of Research in Open and Distributed Learning, 21(1), 172-196. https://doi.org/10.19173/irrodl.v21i1.4557
- Chen, L. (2023). Internet of things (iot) based investigation between instructors' insight of constructivist learning theory and learners performance analysis in higher vocational accounting training. International Journal on Recent and Innovation Trends in Computing and Communication, 11(6s), 217-227. https://doi.org/10.17762/ijritcc.v11i6s.6824
- Crockett, K., Latham, A., & Whitton, N. (2017). On predicting learning styles in conversational intelligent tutoring systems using fuzzy decision trees. International Journal of Human-Computer Studies, 97, 98-115. https://doi.org/10.1016/j.ijhcs.2016.08.005
- Dai, Y., Chai, C., Lin, P., Jong, M., Guo, Y., & Jian-jun, Q. (2020). Promoting students' well-being by developing their readiness for the artificial intelligence age. Sustainability, 12(16), 6597. https://doi.org/10.3390/su12166597
- Demianenko, O. (2024). Impact of artificial intelligence in foreign language teaching: forming and developing students' skills. Věda a Perspektivy, (4(35)). https://doi.org/10.52058/2695-1592-2024-4(35)-191-199
- Dung, P. and Florea, A. (2013). Adaptation to learners' learning styles in a multi-agent e-learning system. Internet Learning. https://doi.org/10.18278/il.2.1.2
- Ezeoguine, E. (2024). Artificial intelligence tools and higher education student's engagement. Edukasiana Journal of Educational Innovation, 3(3), 300-312. https://doi.org/10.56916/ejip.v3i3.733
- Ghadirli, H. and Rastgarpour, M. (2013). A web-based adaptive and intelligent tutor by expert systems., 87-95. https://doi.org/10.1007/978-3-642-31552-7_10

- Goel, A. and Joyner, D. (2017). Using ai to teach ai: lessons from an online ai class. Ai Magazine, 38(2), 48-58. https://doi.org/10.1609/aimag.v38i2.2732
- Grubaugh, S. (2024). The future of elementary social studies: harnessing ai's potential through evidence-based practices. Technium Social Sciences Journal, 58, 87-93. https://doi.org/10.47577/tssj.v58i1.10991
- Gupta, D. (2024). Navigating the future of education: the impact of artificial intelligence on teacher-student dynamics. EATP, 6006-6013. https://doi.org/10.53555/kuey.v30i4.2332
- Harry, A. (2023). Role of ai in education. Interdiciplinary Journal and Hummanity (Injurity), 2(3), 260-268. https://doi.org/10.58631/injurity.v2i3.52
- Jafari, F. (2023). Identifying the opportunities and challenges of artificial intelligence in higher education: a qualitative study. Journal of Applied Research in Higher Education, 16(4), 1228-1245. https://doi.org/10.1108/jarhe-09-2023-0426
- Ji, X. (2024). Construction and innovative exploration of personalized learning systems in the context of educational data mining. International Journal of Information and Communication Technology Education, 20(1), 1-14. https://doi.org/10.4018/ijicte.346992
- Jia, S. and Zhang, X. (2021). Teaching mode of psychology and pedagogy in colleges and universities based on artificial intelligence technology. Journal of Physics Conference Series, 1852(3), 032033. https://doi.org/10.1088/1742-6596/1852/3/032033
- Jian, M. (2023). Personalized learning through ai. AEI, 5(1), 16-19. https://doi.org/10.54254/2977-3903/5/2023039
- Kay, J. and Kummerfeld, B. (2019). From data to personal user models for life-long, life-wide learners. British Journal of Educational Technology, 50(6), 2871-2884. https://doi.org/10.1111/bjet.12878
- Ke, M. (2023). Applications and challenges of artificial intelligence in the future of art education. Pacific International Journal, 6(3), 61-65. https://doi.org/10.55014/pij.v6i3.405
- Khan, S. and Alqahtani, S. (2020). Big data application and its impact on education. International Journal of Emerging Technologies in Learning (Ijet), 15(17), 36. https://doi.org/10.3991/ijet.v15i17.14459
- Latham, A., Crockett, K., McLean, D., & Edmonds, B. (2012). A conversational intelligent tutoring system to automatically predict learning styles. Computers & Education, 59(1), 95-109. https://doi.org/10.1016/j.compedu.2011.11.001
- Luan, H., Géczy, P., Lai, H., Gobert, J., Yang, S., Ogata, H., ... & Tsai, C. (2020). Challenges and future directions of big data and artificial intelligence in education. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.580820
- Mirata, V. and Bergamin, P. (2023). Role of organisational readiness and stakeholder acceptance: an implementation framework of adaptive learning for higher education. Educational Technology Research and Development, 71(4), 1567-1593. https://doi.org/10.1007/s11423-023-10248-7
- Murtaza, M., Ahmed, Y., Shamsi, J., Sherwani, F., & Usman, M. (2022). Ai-based personalized e-learning systems: issues, challenges, and solutions. Ieee Access, 10, 81323-81342. https://doi.org/10.1109/access.2022.3193938
- Namjoo, F. (2023). Students experience on self-study through ai. aitechbesosci, 1(3), 35-42. https://doi.org/10.61838/kman.aitech.1.3.6
- Nasir, M. (2024). Utilizing artificial intelligence in education to enhance teaching effectiveness. Proceedings of ICE, 2(1), 280-285. https://doi.org/10.32672/pice.v2i1.1367
- Nazari, N., Shabbir, M., & Setiawan, R. (2021). Application of artificial intelligence powered digital writing assistant in higher education: randomized controlled trial. Heliyon, 7(5), e07014. https://doi.org/10.1016/j.heliyon.2021.e07014
- Nguyen, A. (2024). Editorial: enhancing student engagement through artificial intelligence (ai): understanding the basics, opportunities, and challenges. Journal of University Teaching and Learning Practice, 21(06). https://doi.org/10.53761/caraaq92

- Nurjanah, A. (2024). Artificial intelligence (ai) usage in today's teaching and learning process: a review. Syntax Idea, 6(3), 1517-1523. https://doi.org/10.46799/syntax-idea.v6i3.3126
- Onesi-Ozigagun, O. (2024). Revolutionizing education through ai: a comprehensive review of enhancing learning experiences. International Journal of Applied Research in Social Sciences, 6(4), 589-607. https://doi.org/10.51594/ijarss.v6i4.1011
- Pardamean, B., Suparyanto, T., Cenggoro, T., Sudigyo, D., & Anugrahana, A. (2022). Ai-based learning style prediction in online learning for primary education. Ieee Access, 10, 35725-35735. https://doi.org/10.1109/access.2022.3160177
- Pendy, B. (2023). Artificial intelligence: the future of education. Indonesian Journal of Social Science, 2(11). https://doi.org/10.59141/jiss.v2i11.801
- Popenici, S. and Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1). https://doi.org/10.1186/s41039-017-0062-8
- Ramesh, S. (2021). Unleashing the future: the dynamic impacts of artificial intelligence on education. Journal of Artificial Intelligence Machine Learning and Neural Network, (12), 27-31. https://doi.org/10.55529/jaimlnn.12.27.31
- Rasheed, Z. (2023). Harnessing artificial intelligence for personalized learning: a systematic review. Data & Metadata, 2, 146. https://doi.org/10.56294/dm2023146
- Samarakoon, L., Fernando, T., & Rodrigo, C. (2013). Learning styles and approaches to learning among medical undergraduates and postgraduates. BMC Medical Education, 13(1). https://doi.org/10.1186/1472-6920-13-42
- Selwyn, N. (2022). The future of ai and education: some cautionary notes. European Journal of Education, 57(4), 620-631. https://doi.org/10.1111/ejed.12532
- Seo, K., Tang, J., Roll, I., Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18(1). https://doi.org/10.1186/s41239-021-00292-9
- Tang, K. (2024). Implications of artificial intelligence for teaching and learning. Acta Pedagogia Asiana, 3(2), 65-79. https://doi.org/10.53623/apga.v3i2.404
- Tlili, A., Denden, M., Essalmi, F., Jemni, M., Kinshuk, K., Chen, N., ... & Huang, R. (2019). Does providing a personalized educational game based on personality matter? a case study. Ieee Access, 7, 119566-119575. https://doi.org/10.1109/access.2019.2936384
- Wang, Y. (2017). Education policy research in the big data era: methodological frontiers, misconceptions, and challenges. Education Policy Analysis Archives, 25, 94. https://doi.org/10.14507/epaa.25.3037
- Watson, C., Li, F., & Lau, R. (2010). A pedagogical interface for authoring adaptive e-learning courses.. https://doi.org/10.1145/1878052.1878056
- Williamson, B. (2017). Big data in education: the digital future of learning, policy and practice.. https://doi.org/10.4135/9781529714920
- Wu, R. and Yu, Z. (2023). Do ai chatbots improve students learning outcomes? evidence from a meta-analysis. British Journal of Educational Technology, 55(1), 10-33. https://doi.org/10.1111/bjet.13334
- Wu, T., Lee, H., Li, P., Huang, C., & Huang, Y. (2023). Promoting self-regulation progress and knowledge construction in blended learning via chatgpt-based learning aid. Journal of Educational Computing Research, 61(8), 3-31. https://doi.org/10.1177/07356331231191125
- Wu, T., Lee, H., Li, P., Huang, C., & Huang, Y. (2023). Promoting self-regulation progress and knowledge construction in blended learning via chatgpt-based learning aid. Journal of Educational Computing Research, 61(8), 3-31. https://doi.org/10.1177/07356331231191125 (2024). Impact of artificial intelligence on student attitudes, engagement, and learning. International Research Journal of Modernization in Engineering Technology and Science. https://doi.org/10.56726/irjmets56247
- Yan, X. and Song, B. (2015). An intelligent tutoring system based on egl.. https://doi.org/10.2991/meici-15.2015.265

- Yousuf, E. (2023). Exploring the effectiveness of ai algorithms in predicting and enhancing student engagement in an e-learning. International Journal on Recent and Innovation Trends in Computing and Communication, 11(10), 23-29. https://doi.org/10.17762/ijritcc.v11i10.8460
- Zhang, L., Xiao, Z., & Lv, P. (2022). Higher education-oriented recommendation algorithm for personalized learning resource. International Journal of Emerging Technologies in Learning (Ijet), 17(16), 4-20. https://doi.org/10.3991/ijet.v17i16.33179
- Zhao, T. (2023). Ai in educational technology.. https://doi.org/10.20944/preprints202311.0106.v1
- Zheng, R. and Badarch, T. (2022). Research on applications of artificial intelligence in education. American Journal of Computer Science and Technology, 5(2), 72. https://doi.org/10.11648/j.ajcst.20220502.17