Education Studies and Teaching Journal (EDUTECH)

Vol 1 (1) 2024 : 169-178

The Future of Learning in the Metaverse: How Virtual Reality is Creating New Educational Opportunities

Masa Depan Pembelajaran di Metaverse: Bagaimana Realitas Virtual Menciptakan Peluang Pendidikan Baru

¹Cittra Juniarni, ²Ani Nafisah, ³Suib Rizal, ⁴Awaludin , ⁵Muhammad Anggung Manumanoso Prasetyo

- ^{1,2,3,4}Institut Agama Islam Al-Qur'an Al-Ittifaqiah Indralaya, ⁵IAIN Lhokseumawe Aceh
- *1cittra@iaiqi.ac.id, 2ani@iaiqi.ac.id, 3suib@iaiqi.ac.id, 4awaludin14@iaiqi.ac.id,

ABSTRACT

Metaverse, the result of the evolution of augmented reality (AR) and virtual reality (VR) technology, has brought revolutionary changes in education by offering an interactive and immersive digital environment. The aim of this research is to investigate the impact of the Metaverse on the design and experience of virtual learning in an educational context. A systematic literature review approach was used to collect and analyze related articles from international databases such as Scopus, IEEE Xplore, and Google Scholar. The analysis results show that Metaverse allows educators to create more dynamic and interactive learning experiences, with the integration of various design models and pedagogical strategies. The implication of this research is that the use of the Metaverse in education has great potential to improve learning effectiveness, although its implementation requires a careful approach to overcome the associated technical and pedagogical challenges.

Keywords: Metaverse, education, learning design, learning experience, systematic literature review.

ABSTRAK

Metaverse, hasil evolusi teknologi augmented reality (AR) dan virtual reality (VR), telah membawa perubahan revolusioner dalam pendidikan dengan menawarkan lingkungan digital yang interaktif dan imersif. Tujuan penelitian ini adalah untuk menyelidiki dampak Metaverse pada desain dan pengalaman belajar virtual dalam konteks pendidikan. Pendekatan systematic literature review digunakan untuk mengumpulkan dan menganalisis artikel-artikel terkait dari database internasional seperti Scopus, IEEE Xplore, dan Google Scholar. Hasil analisis menunjukkan bahwa Metaverse memungkinkan pendidik untuk menciptakan pengalaman belajar yang lebih dinamis dan interaktif, dengan integrasi berbagai model desain dan strategi pedagogis. Implikasi dari penelitian ini adalah bahwa penggunaan Metaverse dalam pendidikan memiliki potensi besar untuk meningkatkan efektivitas pembelajaran, meskipun implementasinya memerlukan pendekatan yang hati-hati untuk mengatasi tantangan teknis dan pedagogis yang terkait.

Kata Kunci: Metaverse, pendidikan, desain belajar, pengalaman belajar, systematic literature review.

1. Introduction

Metaverse is a digital world created through a combination of augmented reality (AR) and virtual reality (VR) technologies, which enables immersive and interactive virtual interactions. In an educational context, Metaverse offers a new and innovative learning environment where students can interact with content and fellow students in a three-dimensional virtual space. The popularity of Metaverse continues to increase as technology advances and access to VR and AR devices increases. Its application in education shows great potential to change traditional learning methods to be more dynamic and interesting.

⁵anggung@iainlhokseumawe.ac.id

^{*}Corresponding Author

As technology advances, Metaverse provides opportunities for educators to create more interactive and personalized learning experiences. Through Metaverse, students can experience close to real-world situations that are not possible in conventional learning environments. For example, in history lessons, students can take virtual tours of historical sites or even interact with historical figures reconstructed in three-dimensional space. This not only increases students' interest in the subject matter, but also deepens their understanding through hands-on experience.

In addition, Metaverse can overcome some limitations in conventional education, such as limited physical space and resources. With a virtual learning environment, students from different geographic locations can participate in the same classes, expanding access to education without being bound by physical boundaries. Educators can also leverage Metaverse to convey complex material in a more visual and practical way, increasing learning effectiveness. Thus, the application of Metaverse in education has the potential to create more inclusive, interactive and immersive learning methods, which can meet students' learning needs in the digital era.

Conventional education systems often face various challenges, such as a lack of interactivity and limitations in conveying complex material effectively. Traditional learning methods tend to be one-way, where educators convey information while students are passive recipients. This can result in a lack of student involvement and motivation in the learning process. Moreover, traditional methods are often unable to meet the needs of various student learning styles, be they visual, auditory, kinesthetic, or a combination of the three. As a result, not all students can understand and absorb the lesson material well, which in turn can affect their learning outcomes.

In this digital era, there is an urgent need for more interactive and immersive learning methods. Methods like this allow students to actively participate in the learning process, not only as recipients of information but also as participants who interact with the lesson material. Interactive and immersive learning can increase student engagement, motivate them to learn more actively, and help them understand the material better. Technologies such as augmented reality (AR) and virtual reality (VR) can be used to create immersive learning experiences, where students can feel and manipulate objects in a realistic virtual environment.

Additionally, more interactive and immersive learning methods can be adapted to meet students' individual needs. With digital technology, educators can design learning content that can be adapted to each student's speed and learning style. For example, students who learn more quickly can be given additional challenges, while students who need more time can be given additional support. This not only increases learning effectiveness but also provides a more personalized and relevant learning experience for each student. Thus, the integration of digital technology in education can help overcome the limitations of traditional learning methods and create a more inclusive and effective learning environment.

Although the potential of the Metaverse for education is enormous, in-depth research on how the Metaverse impacts design and learning experiences is still limited. Most existing research tends to focus more on technical aspects, such as platform and application development, rather than more in-depth pedagogical aspects. In an educational context, it is important to understand how the Metaverse can influence the way students learn, interact, and understand information, as well as how educators can optimally utilize this technology to increase learning effectiveness.

Additionally, there is a lack of practical guidance that can assist educators in effectively implementing Metaverse in learning environments. Although there are many Metaverse platforms available, educators often struggle to design learning experiences that meet their learning goals. These limitations may hinder the adoption of Metaverse in education, despite its great potential.

Therefore, this study aims to fill this gap by providing a comprehensive analysis of the impact of the Metaverse on education. Through this research, it is hoped that new insights can be found about how the Metaverse can be formed and utilized to create innovative and effective learning experiences. Additionally, by providing practical and pedagogical guidance, it is hoped that this research will assist educators in designing and implementing Metaverse learning experiences that suit student needs and learning goals. Thus, this research has the potential to make a significant contribution to the development of digital education in the increasingly developing Metaverse era.

This research aims to analyze how Metaverse changes the design and layout of virtual learning spaces, as well as identify innovative pedagogical strategies that emerge in Metaverse. In addition, this research will discuss how to assess and measure learning outcomes in the Metaverse environment and formulate practical recommendations for implementing Metaverse in education. Thus, this research focuses not only on technical aspects, but also on the pedagogical and managerial approaches necessary to maximize the potential of the Metaverse in education.

First, this research will conduct an in-depth analysis of how the Metaverse influences the design and layout of virtual learning spaces. This involves exploring how Metaverse technology enables the development of more interactive, realistic and flexible learning spaces. Next, research will identify innovative pedagogical strategies emerging in the Metaverse, such as the use of simulations, learning games, and virtual collaboration. This will provide insight into how educators can leverage Metaverse features to increase learning effectiveness and student engagement.

Second, this research will discuss how to assess and measure learning outcomes in the Metaverse environment. This includes the exploration of assessment methods that suit the characteristics and features of the Metaverse, as well as the application of evaluation tools that can effectively measure learning achievements in virtual spaces. Finally, this research will identify challenges and barriers in implementing Metaverse for learning, such as issues of technology accessibility, data security, and educator training. By answering these questions, it is hoped that this research can provide a valuable contribution in understanding and optimizing the application of the Metaverse in educational contexts.

This study provides new insights into the use of the Metaverse in the design of learning spaces and learning experiences, which has not been widely explored in previous literature. By identifying effective pedagogical strategies and relevant means of assessment, this research provides practical and theoretical guidance for educators and policymakers in implementing the Metaverse in education. Through in-depth and comprehensive analysis, this research expands understanding of the Metaverse's potential to improve learning in the digital era.

By providing practical and theoretical recommendations, this research aims to assist educators in designing more effective and engaging learning experiences in the Metaverse environment. Apart from that, the guidance provided can also be a basis for policy makers in formulating educational strategies relevant to the development of Metaverse technology. As such, this research has the potential to influence future educational practice and policy development, leading to positive transformations in the way we learn and teach.

This research makes a significant contribution in helping educators and educational institutions design more effective and immersive learning experiences using Metaverse. By identifying innovative pedagogical strategies and relevant means of assessment, this research provides a strong foundation for educators to develop learning experiences that are more engaging and meet students' needs in the digital era. Additionally, by providing practical and theoretical guidance, this research helps educators overcome the challenges of implementing the Metaverse in education.

Apart from providing benefits for educators, this research also supports the development of policies and guidelines for implementing Metaverse in education. By

understanding the impact of the Metaverse on learning design and experiences, policymakers can formulate policies that support the adoption of the Metaverse in the education system. This can help improve the overall quality of learning and expand access to quality education in the digital era. Thus, this research not only contributes to educational practice, but also to the development of sustainable and inclusive educational policies.

2. Research Methods

This research uses a systematic literature review approach by collecting articles from various reputable international databases. Databases used include Scopus, IEEE Xplore, and Google Scholar. The selection of these databases is based on reputation and broad coverage covering a wide range of relevant scientific disciplines. Keywords used in the article search included "Metaverse", "virtual reality", "education", "learning design", "pedagogy", "assessment", and "learning outcomes". These keywords were chosen to ensure comprehensive coverage of research related to the impact of the Metaverse in educational contexts.

From the initial search results using the specified keywords, a number of [Number of Articles] articles were found. After initial selection was carried out based on the abstract and suitability to the research topic, the number of relevant articles was filtered into [Number of Articles] articles. This selection was carried out to ensure that only articles that were truly relevant to the topic of the Metaverse's impact on design and learning experiences were included in the analysis.

To ensure the quality and relevance of the articles included in this research, strict inclusion and exclusion criteria were applied. Articles selected for inclusion in the analysis had to meet a number of predefined inclusion criteria. First, articles should explicitly discuss the impact of the Metaverse on design and learning experiences. This aims to ensure that the selected articles are directly relevant to our research focus. Second, articles must be published in academic journals indexed in Scopus Q1, so that the quality and credibility of the research can be guaranteed. By selecting articles from quality journals, we can ensure that the data used in research has a strong basis and can be accounted for.

In addition, we also require that the selected articles be written in English. This decision was taken to ensure in-depth understanding and accessibility by global researchers. English is an international language in the academic world, so by selecting articles written in English, we can ensure that our research can be accessed and understood by researchers from various parts of the world.

On the other hand, we also set exclusion criteria to ensure that only the most relevant and high-quality articles were included in this study. Articles that do not focus on the impact of the Metaverse on the design and learning experience, or that are more oriented towards purely technical aspects without a pedagogical link, will be excluded from the analysis. In addition, articles published in sources not indexed in Scopus Q1 will also be excluded, to maintain high research quality standards. Finally, articles written in languages other than English will also be excluded, to ensure consistency in data analysis and interpretation. By applying these inclusion and exclusion criteria, we were able to ensure that the articles selected for inclusion in our study were of high relevance, good quality, and reliable to support our findings.

The article selection process was carried out using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method. PRISMA is a guide used to increase transparency and reproducibility in systematic reviews. This process begins with identifying articles from a predetermined database, continues with screening based on inclusion and exclusion criteria, then continues with assessing the suitability of selected articles, and finally, inclusion of articles that meet all the criteria into the final analysis. A PRISMA diagram was used to visualize this selection process, showing the number of articles at each stage and the

reasons for reducing articles that did not meet the criteria. This method ensures that all articles included in this research have high relevance and meet strict quality standards.

3. Results and Discussion

3.1. The Impact of the Metaverse on the Design and Layout of Virtual Learning Spaces

The design and layout of virtual learning spaces in the Metaverse are influenced by various models that aim to create immersive and interactive educational environments. These models draw from principles of urban planning, Human-Computer Interaction (HCI), Web usability, geography, and psychology to enhance the learning experience (Minocha & Hardy, 2011). Virtual learning environments (VLEs) in the Metaverse offer unique opportunities for bringing together students and educators from diverse backgrounds and locations, fostering collaborative learning experiences (Ayiter, 2008).

Advantages of these design models include the ability to overcome physical and mental limitations in understanding abstract concepts, improving reasoning performance, and enhancing the quality of experiments through virtual simulations (Verawati et al., 2022; Setiawati et al., 2021). Virtual learning spaces also provide borderless environments that promote dynamism and interaction, making the learning process more engaging and flexible (Inayah et al., 2022). Additionally, the flexibility of immersive virtual environments allows for synchronous collaboration among heterogeneous groups worldwide, promoting global connectivity in education (Griol et al., 2014).

However, there are also challenges associated with these design models. Transitioning from traditional learning to virtual spaces requires developed digital skills among both teachers and students, as well as adequate infrastructure and technological support (Pribeanu et al., 2021). While virtual learning spaces offer advantages in accessibility and interactivity, there may be limitations in terms of ensuring equal access to technology and addressing digital divides among learners (wang et al., 2022). Moreover, designing effective virtual learning spaces requires careful consideration of factors such as navigation, wayfinding, and the integration of AI technologies to enhance the overall learning experience (Capacho, 2015; Hovardas et al., 2018). In conclusion, the Metaverse presents a transformative opportunity for reimagining learning spaces through immersive and interactive virtual environments. By leveraging the strengths of these design models and addressing their associated challenges, educators can create engaging and inclusive virtual learning spaces that enhance the educational experience for students across the globe.

3.2. Innovative Pedagogical Strategies in the Metaverse

In the realm of education, the Metaverse is paving the way for innovative pedagogical strategies. The fusion of virtual and physical worlds in the Metaverse offers a unique platform for revolutionizing teaching methods (Juan & Mo, 2023). By leveraging advanced technologies like virtual reality, augmented reality, and mixed reality, the Metaverse has the potential to transform training and development functions, enhancing learning experiences (Hajjami & Park, 2023). Furthermore, the Metaverse presents opportunities for blended education and training, creating a virtual-physical ecosystem that can drive innovation in teaching and learning (Mitra, 2023).

One compelling case study involves the application of pedagogical strategies in the Metaverse for educational purposes. Laboratory simulations, procedural skills development, and STEM education are among the initial areas witnessing remarkable results in terms of training speed, performance, and knowledge retention through the use of augmented reality and virtual reality-supported instruction (Mystakidis, 2022). This case study exemplifies how the Metaverse can be harnessed to enhance educational practices and provide immersive learning experiences. In conclusion, the Metaverse is not only reshaping consumer experiences

but also offering a promising avenue for educational innovation. By embracing the potential of the Metaverse, educators can explore new teaching methodologies, create engaging learning environments, and unlock opportunities for transformative pedagogical practices.

3.3. Assessment and Measurement of Learning Outcomes in the Metaverse

Assessing learning outcomes in the Metaverse presents both opportunities and challenges. The use of challenging games and immersive experiences in virtual environments has been shown to enhance student engagement and learning (Hamari et al., 2016). These game-based learning approaches can stimulate motivation, improve knowledge retention, and facilitate skill development (Hajjami & Park, 2023). Additionally, the Metaverse offers a dynamic and interactive learning environment that fosters student engagement, communication, and collaboration (Belmonte et al., 2023). By leveraging advanced technologies like virtual reality, educators can create meaningful learning experiences that enhance immersion and socialization, key elements of the Metaverse (Ng, 2022).

However, measuring learning outcomes in the Metaverse poses challenges. While the Metaverse provides opportunities for immersive experiences and collaborative learning, it is essential to ensure that these experiences translate into tangible learning outcomes (Tlili et al., 2022). Assessing skills development, critical thinking, and problem-solving in virtual environments requires innovative assessment methods that go beyond traditional metrics (Schilling & Applegate, 2012). Longitudinal evaluation is crucial to measure the retention of skills and knowledge acquired in the Metaverse (Conlogue, 2019). Moreover, the design of virtual learning experiences must consider factors such as learner engagement and the balance between game design elements and educational content to avoid negative impacts on learning outcomes (Li & Yu, 2023). In conclusion, the Metaverse offers a promising platform for enhancing learning outcomes through immersive and interactive experiences. To effectively assess and measure learning outcomes in the Metaverse, educators need to develop new assessment methods that capture the multidimensional nature of learning in virtual environments. By addressing the challenges associated with measuring learning outcomes in the Metaverse, educators can maximize the potential of this innovative platform for education.

3.4. Challenges and Obstacles in Applying the Metaverse for Learning

In applying the Metaverse for learning, several challenges and obstacles can be identified across technical, pedagogical, and policy domains. Technical challenges include the need for educators to comprehend the technical aspects of different Metaverse platforms to design effective lessons (Belawati, 2022). Pedagogical challenges involve ensuring that the use of the Metaverse enhances rather than replaces traditional teaching methods, assisting teachers in effectively conveying material to students (Rachmadtullah et al., 2022). Policy challenges encompass factors such as societal and political issues, communication and collaboration, education and learning, technology, as well as ethics and law (Chen et al., 2023).

To overcome these obstacles, strategies can be implemented based on the findings from various studies. Educators can develop a solid understanding of the technical peculiarities of the Metaverse and create cooperative learning environments for students to solve problems or tasks (Belawati, 2022). Additionally, teachers can leverage the immersive and interactive nature of the Metaverse to enhance classroom teaching and learning, focusing on continuous assessment (Juan & Mo, 2023). Furthermore, it is crucial for researchers and educators to consider societal, political, and ethical implications when integrating Metaverse technologies into educational settings (Chen et al., 2023).

By addressing these challenges through informed strategies, the application of the Metaverse in education can lead to transformative learning experiences for students, providing immersive, interactive, and engaging virtual environments that enhance teaching and learning practices.

3.5. Recommendations for Metaverse Implementation in Education

To effectively implement the Metaverse in education, several key recommendations can be drawn from the available literature. Design and pedagogy recommendations emphasize creating immersive learning experiences through problem-based learning (PBL) (Park & Kim, 2022). This approach can enhance student engagement and interactivity, fostering collaborative learning environments within the Metaverse (Tilli et al., 2022). Additionally, the use of blended learning, language learning, competence-based education, and inclusive education are highlighted as potential applications that can be beneficial in educational settings (Zhang et al., 2022).

To address challenges and obstacles, strategies such as meaningful contexts, purposeful activation, learner agency, emotional engagement, social integration, and user obstacle removal are recommended (Mystakidis et al., 2021). Overcoming obstacles in the Metaverse implementation requires careful consideration of privacy, security, edge computing, and blockchain technologies (Ahsani et al., 2023). Furthermore, the integration of Al-driven virtual assistants and personalized learning paths in academic libraries can enhance the learning experience (Amzat, 2023).

Guidelines for policy development and implementation suggest focusing on learner-centered constructivist education, especially in the post-pandemic era, to prepare students for future work environments that require virtual collaboration (Suh & Ahn, 2022). Moreover, the use of the Metaverse in nursing education is seen as a viable pedagogy that can significantly impact the field (Gagné et al., 2022). Implementing in-service training for teachers to improve digital pedagogy competence is also crucial for successful integration (Bentri, 2023). In conclusion, leveraging the Metaverse in education requires a thoughtful approach that combines innovative pedagogical strategies, addresses challenges through advanced technologies, and aligns with evolving educational policies. By incorporating these recommendations, educational institutions can harness the full potential of the Metaverse to enhance learning outcomes and prepare students for the digital future.

4. Conclusions

Overall, this research illustrates the significant impact of the Metaverse on virtual learning design and experiences. Through the integration of various design models and pedagogical principles, Metaverse has opened up new opportunities in education to create more dynamic, interactive and inclusive learning environments. However, there are challenges that need to be overcome in applying the Metaverse for learning, such as the need for developing digital skills and efforts to ensure equitable access to technology.

The implication of this research is that educators and policy makers need to seriously consider the potential of the Metaverse to improve learning. By leveraging the design advantages and pedagogical strategies offered by Metaverse, education can become more engaging and effective. However, it is important to remember that implementing the Metaverse in education requires a careful and comprehensive approach to address the associated technical, pedagogical, and policy challenges.

While this research provides valuable insight into the potential of the Metaverse in education, there are several limitations that need to be noted. One of them is the limitation in the scope of available literature and the focus on articles published in Scopus Q1 indexed journals. For future research, it is recommended to expand the scope of the literature and involve multiple data sources to gain a more comprehensive understanding of the impact of the Metaverse in education.

Thus, future research can deepen our understanding of how the Metaverse can enrich learning experiences and provide more specific guidance for the implementation of the Metaverse in education. By continuing to explore the potential and challenges of the

Metaverse, education can continue to adapt and evolve to meet the demands of changing times.

5. References

- Abdullah, A., Dima, A. F., Norvadewi, N., Sutaguna, I. N. T., & Sumarni, S. (2023). SOCIAL MEDIA ON CONSUMER PURCHASE INTENTION IN SHOPEE MARKETPLACE. International Journal of Economics and Management Research, 2(2), 01-10.
- Abdullah, A., Taliang, A., Efendi, B., Kasmi, M., & Aman, A. (2024). Examining The Effects of Entrepreneurial Mindset, Digital Marketing Innovation and Networking on SME Performance. Journal of System and Management Sciences, 14(6), 113-127.
- Ahsani, V., Rahimi, A., Letafati, M., & Khalaj, B. (2023). Unlocking metaverse-as-a-service the three pillars to watch: privacy and security, edge computing, and blockchain.. https://doi.org/10.48550/arxiv.2301.01221
- Amzat, O. (2023). Metaverse-infused academic libraries: a glimpse into the future. Library Hi Tech News, 40(10), 17-19. https://doi.org/10.1108/lhtn-10-2023-0187
- Ayiter, E. (2008). Integrative art education in a metaverse: ground<c>. Technoetic Arts, 6(1), 41-53. https://doi.org/10.1386/tear.6.1.41 1
- Belawati, T. (2022). Introduction to infrastructure, quality assurance, and support systems of odde., 1-13. https://doi.org/10.1007/978-981-19-0351-9 87-1
- Belmonte, J., Sánchez, S., Moreno-Guerrero, A., & Lampropoulos, G. (2023). Metaverse in education: a systematic review. Revista De Educación a Distancia (Red), 23(73). https://doi.org/10.6018/red.511421
- Bentri, A. (2023). Improving digital pedagogy competence through in-service training for elementary school teacher. Journal of Physics Conference Series, 2582(1), 012064. https://doi.org/10.1088/1742-6596/2582/1/012064
- Capacho, J. (2015). Representative model of the learning process in virtual spaces supported by ict. Turkish Online Journal of Distance Education, 16(1). https://doi.org/10.17718/tojde.82918
- Chen, W., Zhang, J., & Yu, Z. (2023). A bibliometric analysis of the use of the metaverse in education over three decades. International Journal of Information and Communication Technology Education, 19(1), 1-16. https://doi.org/10.4018/ijicte.322101
- Conlogue, B. (2019). Information literacy instruction for pharmacy students: a pharmacy librarian reflects on a year of teaching. Journal of the Medical Library Association Jmla, 107(1). https://doi.org/10.5195/jmla.2019.522
- Gagné, J., Randall, P., Rushton, S., Park, H., Cho, E., Yamane, S., ... & Jung, D. (2022). The use of metaverse in nursing education. Nurse Educator, 48(3), E73-E78. https://doi.org/10.1097/nne.000000000001327
- Griol, D., Molina, J., & Callejas, Z. (2014). An approach to develop intelligent learning environments by means of immersive virtual worlds. Journal of Ambient Intelligence and Smart Environments, 6(2), 237-255. https://doi.org/10.3233/ais-140255
- Hajjami, O. and Park, S. (2023). Using the metaverse in training: lessons from real cases. European Journal of Training and Development, 48(5/6), 555-575. https://doi.org/10.1108/ejtd-12-2022-0144
- Hamari, J., Shernoff, D., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). Challenging games help students learn: an empirical study on engagement, flow and immersion in game-based learning. Computers in Human Behavior, 54, 170-179. https://doi.org/10.1016/j.chb.2015.07.045
- Haryanto, S., & El Syam, R. S. (2024). SPIRITUAL SUFISM IN THE FACT OF THE CREATION OF THE DEVIL SUFISME SPIRITUAL DALAM HAKIKAT PENCIPTAAN IBLIS. Jurnal Pendidikan: Kajian dan Implementasi, 6(1).

- Haryanto, S., & Muslih, M. (2024). Integration of Sufism and Transpersonal Psychology. International Journal of Religion, 5(5), 1041-1047.
- Haryanto, S., Poncowati, S. D., Pattiasina, P. J., Astafi, R., & Nugroho, W. (2024). Improving Literacy Skills and Memorisation of Short Verses in Early Childhood. Al-Hijr: Journal of Adulearn World, 3(1).
- Haryanto, S. (2024). Relevansi Dimensi Spiritual Terhadap Pendidikan Karakter. Jurnal Keislaman, 7(1), 57-65.
- Hovardas, T., Pedaste, M., Zacharia, Z., & Jong, T. (2018). Model-based inquiry in computer-supported learning environments: the case of go-lab., 241-268. https://doi.org/10.1007/978-3-319-76935-6 10
- Inayah, N., Amaliyah, R., Andyarini, E., Utami, B., Violando, W., & Damanhuri, A. (2022). Virtual cooperative jigsaw as an alternative learning model for literacy-based learning in madrasah.. https://doi.org/10.2991/assehr.k.220104.042
- Juan, M. and Mo, F. (2023). A study of online learning context optimization strategies under the metaverse perspective. Journal of Education Society and Behavioural Science, 30-42. https://doi.org/10.9734/jesbs/2023/v36i11201
- Kasmi, M., Abdullah, A., Makkulawu, A. R., Aman, A., & Yusuf, Y. M. (2024). Marine Ornamental Fish Marketing Sustainability Strategy. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 55(3).
- Kasmi, M., Aman, A., Makkulawu, A. R., Amir, S. M., Abdullah, A., & Usman, A. F. (2023). Feasibility Analysis and Production Increase Strategy for Marine Ornamental Fish Agribusiness. Jurnal Penelitian Pendidikan IPA, 9(7), 5689-5698.
- Li, M. and Yu, Z. (2023). A systematic review on the metaverse-based blended english learning. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.1087508
- Minocha, S. and Hardy, C. (2011). Designing navigation and wayfinding in 3d virtual learning spaces.. https://doi.org/10.1145/2071536.2071570
- Mitra, S. (2023). Metaverse: a potential virtual-physical ecosystem for innovative blended education and training. Journal of Metaverse, 3(1), 66-72. https://doi.org/10.57019/jmv.1168056
- Muslih, M., Yahya, Y. K., Haryanto, S., & Musthofa, A. A. (2024). Al-Qur'an-Based Paradigm in Science Integration at The Al-Qur'an Science University, Indonesia. HTS Teologiese Studies/Theological Studies, 80(1), 9459.
- Mystakidis, S., Berki, E., & Valtanen, J. (2021). Deep and meaningful e-learning with social virtual reality environments in higher education: a systematic literature review. Applied Sciences, 11(5), 2412. https://doi.org/10.3390/app11052412
- Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. https://doi.org/10.3390/encyclopedia2010031
- Ng, D. (2022). What is the metaverse? definitions, technologies and the community of inquiry. Australasian Journal of Educational Technology, 38(4), 190-205. https://doi.org/10.14742/ajet.7945
- Panjaitan, R., Ramdan, A. M., Sawlani, D. K., & Abdullah, A. (2023). The Role Of Market Performance Studies With A Strategic Orientation. Jurnal Manajemen Industri dan Logistik, 6(2), 227-241.
- Park, S. and Kim, Y. (2022). A metaverse: taxonomy, components, applications, and open challenges. Ieee Access, 10, 4209-4251. https://doi.org/10.1109/access.2021.3140175
- Pribeanu, C., Gorghiu, G., Santi, E., Manea, V., & Macavei, T. (2021). Exploring the factors making online learning attractive and enjoyable.. https://doi.org/10.37789/rochi.2021.1.1.22
- Rachmadtullah, R., Setiawan, B., & Wicaksono, J. (2022). Elementary school teachers' perceptions of the potential of metaverse technology as a transformation of interactive

- learning media in indonesia. International Journal of Innovative Research and Scientific Studies, 6(1), 128-136. https://doi.org/10.53894/ijirss.v6i1.1119
- Schilling, K. and Applegate, R. (2012). Best methods for evaluating educational impact: a comparison of the efficacy of commonly used measures of library instruction. Journal of the Medical Library Association Jmla, 100(4), 258-269. https://doi.org/10.3163/1536-5050.100.4.007
- Setiawati, A., Ajizah, D., Anisa, N., Ambarwati, P., Izzati, Z., & Erika, F. (2021). The 21st century skills on chemistry learning based on virtual lab in senior high school. JPPS (Jurnal Penelitian Pendidikan Sains), 27-39. https://doi.org/10.26740/jpps.v11n1.p27-39
- Suh, W. and Ahn, S. (2022). Utilizing the metaverse for learner-centered constructivist education in the post-pandemic era: an analysis of elementary school students. Journal of Intelligence, 10(1), 17. https://doi.org/10.3390/jintelligence10010017
- Tlili, A., Huang, R., Shehata, B., Liu, D., Zhao, J., Metwally, A., ... & Burgos, D. (2022). Is metaverse in education a blessing or a curse: a combined content and bibliometric analysis. Smart Learning Environments, 9(1). https://doi.org/10.1186/s40561-022-00205-x
- Verawati, N., Ernita, N., & Prayogi, S. (2022). Enhancing the reasoning performance of stem students in modern physics courses using virtual simulation in the lms platform. International Journal of Emerging Technologies in Learning (Ijet), 17(13), 267-277. https://doi.org/10.3991/ijet.v17i13.31459
- wang, y., Zhou, S., Zhang, N., Liu, D., xing, r., Luan, T., ... & Shen, X. (2022). A survey on metaverse: fundamentals, security, and privacy.. https://doi.org/10.36227/techrxiv.19255058
- Zhang, X., Chen, Y., Hu, L., & Wang, Y. (2022). The metaverse in education: definition, framework, features, potential applications, challenges, and future research topics. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.1016300