

Digital Fluency in Education: Integrating Technology for Effective Teaching and Learning

Kefasihan Digital dalam Pendidikan: Mengintegrasikan Teknologi untuk Pengajaran dan Pembelajaran yang Efektif

Muhammad Yasin

Universitas Muhammadiyah Makassar

*muhammad.yasin@unismuh.ac.id

***Corresponding Author**

ABSTRACT

Digital fluency and collaboration skills in the context of technology-based learning are areas of increasing importance in modern education. This study aims to investigate the role of digital fluency skills in improving collaboration between teachers and students in technology-based learning. The research method used included a literature review of articles from relevant international databases. The results of the discussion highlight the importance of digital fluency skills in facilitating effective collaboration between teachers and students in technology-based learning. The implication of this research is the need for a holistic approach in developing digital fluency skills, as well as the importance of support and collaboration between stakeholders to overcome challenges in implementing effective collaboration in technology-based learning.

Keywords: **digital fluency skills, teacher-student collaboration, technology-based learning, education, literature review.**

ABSTRAK

Keterampilan digital fluency dan kolaborasi dalam konteks pembelajaran berbasis teknologi merupakan area yang semakin penting dalam pendidikan modern. Studi ini bertujuan untuk menyelidiki peran keterampilan digital fluency dalam meningkatkan kolaborasi antara guru dan siswa dalam pembelajaran berbasis teknologi. Metode penelitian yang digunakan meliputi tinjauan literatur terhadap artikel-artikel dari database internasional yang relevan. Hasil pembahasan menyoroti pentingnya keterampilan digital fluency dalam memfasilitasi kolaborasi yang efektif antara guru dan siswa dalam pembelajaran berbasis teknologi. Implikasi dari penelitian ini adalah perlunya pendekatan holistik dalam mengembangkan keterampilan digital fluency, serta pentingnya dukungan dan kerjasama antar-stakeholder untuk mengatasi tantangan dalam implementasi kolaborasi yang efektif dalam pembelajaran berbasis teknologi.

Kata Kunci: **keterampilan digital fluency, kolaborasi guru-siswa, pembelajaran berbasis teknologi, pendidikan, tinjauan literatur.**

1. Introduction

Digital fluency in education is a crucial aspect that has garnered increased attention in recent years. It involves the effective utilization of digital tools for content creation, problem-solving, and creative design (Caton et al., 2022). This fluency is vital for educators as it enables them to advance in their digital competence levels and adapt to new challenges (Santo et al., 2022). The significance of digital fluency has been underscored during the COVID-19 pandemic, where digital inequalities have been exacerbated, emphasizing the necessity for

individuals to possess the essential digital literacy to access crucial services and information (Beaunoyer et al., 2020).

Integrating digital fluency into educational curricula is essential for preparing students for the demands of the 21st century. Lifelong learning pathways, in conjunction with digital fluency and mathematical skills, should be integrated into educational innovations to ensure students are equipped with the requisite skills for the future (Ayanwale, 2023). Moreover, the progression towards higher levels of digital competence is highlighted by the three tiers of digital skills - literacy, fluency, and mastery (Woldegiorgis, 2022).

Educators play a pivotal role in fostering digital fluency among students. The development of teachers' digital fluency and pedagogies is supported by frameworks such as the Professional Development Framework for Digital Learning, which offers a roadmap for enhancing educators' digital skills (Fleur & Dlamini, 2022). Additionally, further research is warranted to understand the impact of digital fluency on enhancing teaching practices within teacher professional development (Thilarajah & Nasendran, 2021). In conclusion, digital fluency is a multifaceted concept that encompasses the ability to effectively leverage technology, create new knowledge, and solve complex problems. It is imperative for educators to continually enhance their digital competence to meet the evolving needs of students in the digital age.

An introduction to the topic "Digital Fluency in Education" highlights the important role of technology in enhancing students' learning experiences and teachers' teaching effectiveness. The integration of technology in the educational context has become increasingly urgent with rapid developments in the digital domain. However, amidst this progress, there is a problem that has not been fully resolved, namely challenges in collaboration between teachers and students in the use of technology for learning. Despite efforts to integrate technology in learning, a lack of understanding of how digital fluency skills can facilitate effective collaboration remains a knowledge gap that needs to be filled. This creates a strong foundation for this research to explore the question: "What is the role of Digital Fluency Skills in Facilitating Teacher and Student Collaboration in Technology-Based Learning?" Thus, this study aims to fill this knowledge gap by gaining a better understanding of the role of digital fluency skills in the context of teacher-student collaboration. Through this research, it is hoped that new insights and significant contributions can be found to improve technology-based learning practices in education.

2. Research Methods

In the Research Methods section, the process of collecting articles from reputable international databases such as Scopus will be carried out. The search will be carried out using predetermined keywords, namely "digital fluency", "technology integration", "teacher-student collaboration", and "education". The time period for collecting articles will be determined according to the needs of this research, with a focus on articles published within a time period that is relevant to the research topic.

Next, article inclusion and exclusion techniques will be applied based on certain criteria to ensure the accuracy and relevance of search results. This includes selecting only articles in English, primary research articles, and articles that are directly relevant to the assigned research topic. These inclusion and exclusion criteria will help obtain the most relevant and high-quality articles for this research.

During the article collection process, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method will be used to systematically compile and report the results of article collection. This will ensure transparency and consistency in the reporting of research results, as well as allow for easier evaluation and replication by other researchers. Thus, this research will uphold strong and academic methodological principles to ensure the validity and reliability of the findings produced.

3. Results and Discussion

3.1.1. Definition of Digital Fluency Skills

Digital fluency skills encompass a wide range of competencies essential for effectively utilizing technology across different contexts. These skills require a deep understanding of how technology can be used to achieve specific goals and the ability to adapt to the constantly changing technological landscape (Khanolainen et al., 2020). Proficiency in hardware and software, skilled navigation in digital environments, effective management and sharing of online information, as well as professional communication and collaboration using various digital tools and platforms are key components of digital fluency (Khanolainen et al., 2020).

In educational settings, there is variability in the definitions and assessments of digital fluency skills. Some evaluation methods focus on technical aspects such as the mastery of specific technological tools, while others emphasize cognitive and social aspects like problem-solving with technology and successful interactions in digital environments (Khanolainen et al., 2020). This diversity highlights the complexity of digital fluency skills and underscores the need for a comprehensive approach to evaluating and nurturing these skills in educational environments.

Educators and researchers face challenges in equipping students with the necessary skills to effectively utilize modern technology in the learning process (Wei et al., 2020). The prevalent use of technology in teaching for administrative purposes rather than enhancing learning highlights the current state of technology integration in education (Wei et al., 2020). Closing this gap requires the development of digital fluency skills that enable individuals to engage professionally with technology and critically assess information (Khanolainen et al., 2020). In conclusion, the multifaceted nature of digital fluency requires a holistic approach to its assessment and development in educational settings. By addressing technical, cognitive, and social aspects, educators can equip students with the competencies needed to skillfully navigate the digital landscape and leverage technology for productive outcomes. This comprehensive approach is crucial for preparing individuals to succeed in an increasingly digital-centric world.

3.1.2. Collaboration in a Technology-Based Learning Context

Collaboration in technology-based learning is a crucial aspect that involves interactions between teachers and students, as well as among students and teachers. This collaborative approach is essential for enhancing student engagement, broadening access to resources, and improving the overall learning experience (Brown et al., 2019). However, challenges such as establishing meaningful teacher-student relationships in digital environments and addressing technical issues like limited internet access can impede effective collaboration (Bogers et al., 2019).

Research emphasizes the significance of multi-stakeholder collaboration in educational settings, particularly in promoting innovative practices like technology-based learning, especially in developing nations (Pellegrini et al., 2023). Overcoming obstacles in technology-based collaboration requires a deep understanding of the complexities involved and the implementation of suitable solutions to leverage the benefits of collaborative learning (Schroeder et al., 2022).

Effective collaboration in technology-based learning has the potential to boost student motivation and engagement, leading to enhanced learning outcomes (Goi et al., 2022). By utilizing appropriate tools and methodologies, educators and students can collaborate to design, implement, and share learning experiences, thereby maximizing the advantages of technology in education (Priyono et al., 2020). In conclusion, while collaboration in technology-based learning offers numerous advantages, it is essential to address challenges such as establishing relationships in digital spaces and overcoming technical limitations to fully harness its benefits. By recognizing and surmounting these barriers through appropriate

strategies, collaboration among teachers and students, between students, and among teachers can significantly enhance the effectiveness of technology-based learning environments.

3.1.3. The Role of Digital Fluency Skills in Increasing Teacher-Student Collaboration

Digital fluency skills are increasingly recognized as essential for enhancing collaboration between teachers and students. Teachers' digital literacy and skills significantly impact their ability to effectively engage students in the learning process (Alanoğlu et al., 2021). By developing digital skills, teachers can not only improve their teaching methods but also enhance student learning outcomes (Loureiro et al., 2021). The integration of digital technology in education, particularly in STEM learning, has been shown to enhance collaboration skills among students (Mutohhari et al., 2021).

Authentic leadership behaviors exhibited by teachers play a crucial role in empowering students digitally and fostering their digital fluency ("Digitally empowered students through teacher leadership: The role of authentic leadership", 2020). Teachers are required to create, support, and facilitate learning in digital environments to promote collaborative working, creativity, and critical thinking among students (Männistö et al., 2019). Moreover, the use of digital media in teaching has been found to be effective in enhancing students' reading skills, including fluency and vocabulary acquisition (Ali, 2021).

Collaborative learning models, such as group investigation, have been proven to be effective in developing students' collaboration skills, highlighting the importance of teachers in fostering collaborative behaviors among students (Rosfiani et al., 2022). Additionally, collaborative digital gameplay has been associated with increased student engagement and improved learning outcomes in mathematics (Li-ping et al., 2022). In conclusion, teachers' digital fluency skills are pivotal in promoting collaboration with students. By enhancing their digital literacy and skills, teachers can create engaging learning environments, foster creativity, critical thinking, and problem-solving skills among students, ultimately improving the overall learning experience.

3.1.4. Strategies and Approaches for Developing Digital Fluency Skills in Collaboration

To enhance digital fluency skills in collaboration, various strategies and approaches can be employed based on research findings. Collaborative learning approaches have been shown to effectively enhance digital skills (Saputra et al., 2021). Developing frameworks that promote agility in technological societies can aid in improving digital fluency (Farshad & Fortin, 2023). Additionally, enhancing fluency and productivity in human-robot collaboration through online scaling of dynamic safety zones is a practical approach (Scalera et al., 2022).

Moreover, utilizing collaborative online discussion strategies can significantly enhance students' fluency levels in various subjects, including English as a Foreign Language (EFL) (Ghareeb, 2022). Digital leadership plays a crucial role in managing challenges and is essential for developing the necessary skills for digital transformation (Zeike et al., 2019). Furthermore, the use of digital qualitative methods can amplify participant voices and improve community engagement in various settings, including clinical trials (Tan et al., 2022).

In educational settings, feedback processing and the development of digital learning infrastructure are vital for enhancing digital fluency skills (Criado et al., 2022; Huda, 2023). Employability skills, including digital skills, are crucial for meeting employer expectations and can be developed through various approaches such as analytical thinking, communication skills, and teamwork (Al-Shehab et al., 2020). Additionally, interprofessional education has been identified as an effective approach to enhance collaboration among health professional students (Price et al., 2021). In conclusion, by incorporating collaborative learning approaches, digital leadership strategies, and utilizing digital qualitative methods, individuals and organizations can effectively enhance digital fluency skills in collaboration. These strategies not only improve digital skills but also foster teamwork, communication, and productivity in various

contexts.

3.1.5. Challenges and Opportunities for Improving Digital Fluency Skills in Collaboration

Improving digital fluency skills through collaboration presents both challenges and opportunities. Effective interventions for building fluency involve models of fluent reading, repeated reading with feedback, and clear performance criteria (Chard et al., 2002). Collaboration in educational settings has shown to enhance learning outcomes, particularly in conceptual understanding, although it may lead to ineffective learning behaviors in procedural tasks (Plass et al., 2013). Training programs can enhance soft interaction skills crucial for effective digital collaboration, such as listening and negotiating conflict (Riggio, 2021). Digital fluency enables individuals to organize and maximize metaknowledge, contributing to improved agility (Wei et al., 2020).

Incorporating digital texts in fluency lessons can enhance students' reading skills, including accuracy and prosody (Thoermer & Williams, 2012). Collaborative digital storytelling activities have been found to improve creative writing and social-emotional learning skills among students (Uslu & Uslu, 2021). The digital fluency gap is becoming increasingly relevant, emphasizing the need to develop the right skills and knowledge from early education (Cismaru et al., 2018). Developing senior leadership's digital fluency is crucial to meet the demands of the digital age (Kolomitz & Cabellon, 2016).

Digital literacy paradigms and theoretical frameworks can enhance cognitive flexibility and learning fluency (Caton et al., 2022). Digital collaboration encompasses socio-emotional dimensions like self-management and self-efficacy (Kwiatkowska & Wiśniewska-Nogaj, 2022). Word reading fluency involves processing multiple items simultaneously, beyond automating individual words (Protopapas et al., 2018). Digital storytelling in language education can enhance critical thinking, collaboration, decision-making, and language skills (Moradi & He-fang, 2019). Digital tools can contribute to data and digital fluency in various fields, including archaeology (Garstki, 2022).

Collaborative efforts are essential to identify digital literacy skill needs and construct models for digital skills development in sectors like hospitality and tourism education (Adeyinka-Ojo et al., 2020). By combining learning strategies and technology resources, meaningful learning scenarios can be created to enhance communicative and collaborative skills (Estriégana et al., 2021). Overall, leveraging collaboration and digital tools effectively can address challenges and unlock opportunities for improving digital fluency skills across various domains.

4. Conclusion

From the results of the discussion that has been presented, several important conclusions can be drawn. First, the importance of digital fluency skills in the context of collaboration between teachers and students in technology-based learning cannot be denied. These skills include a deep understanding of the use of technology to achieve specific goals, the ability to manage information effectively, and the ability to communicate and collaborate professionally through a variety of digital tools and platforms.

Second, although there are challenges that need to be overcome, such as gaps in access and use of technology and technical obstacles, there are also strategic and policy opportunities that can be utilized to improve digital fluency skills in collaboration. This includes developing a curriculum that integrates digital fluency skills, support from various parties, such as educational institutions, industry and government, as well as increasing collaboration between stakeholders to promote innovation in technology-based learning.

Third, in developing digital fluency skills in collaboration, a holistic and strategic approach is needed. This includes implementing supportive learning models, developing

inclusive policies, and using appropriate technology tools and platforms. By paying attention to these various aspects, educators can help students develop the skills needed to be successful in an increasingly advanced digital era.

However, there are several limitations that need to be considered in interpreting the results of this study. One is that the research may be limited to a particular context or limited sample. Additionally, it is possible that there are other factors not considered in this analysis that could significantly influence the results.

For future research, it is important to continue to explore new aspects of digital fluency skills in collaboration, as well as identify more effective strategies in developing them. This could include more in-depth research on the influence of educational policies and learning practices on the development of digital fluency skills, as well as longitudinal research to understand the long-term impact of educational and training interventions in this regard. Thus, future research can provide deeper insights and more effective solutions in facing challenges and exploiting opportunities in developing digital fluency skills in collaboration.

5. References

Adeyinka-Ojo, S., Lee, S., Abdullah, S., & Teo, J. (2020). Hospitality and tourism education in an emerging digital economy. *Worldwide Hospitality and Tourism Themes*, 12(2), 113-125. <https://doi.org/10.1108/whatt-12-2019-0075>

Aizikovitsh-Udi, E. and Cheng, D. (2015). Developing critical thinking skills from dispositions to abilities: mathematics education from early childhood to high school. *Creative Education*, 06(04), 455-462. <https://doi.org/10.4236/ce.2015.64045>

Amanda, F., Sumitro, S., Lestari, S., & Ibrohim, I. (2022). The correlation of critical thinking and concept mastery to problem-solving skills: the role of complexity science-problem based learning model. *Pedagogika*, 146(2), 80-94. <https://doi.org/10.15823/p.2022.146.4>

Amer, M. (2022). The impact of project based learning on enhancing prospective tour guides' oral performance. *Egyptian Journal of Educational Sciences*, 2(2), 13-36. <https://doi.org/10.21608/ejes.2022.270687>

Amin, S., Utaya, S., Bachri, S., Sumarmi, S., & Susilo, S. (2020). Effect of problem based learning on critical thinking skill and environmental attitude. *Journal for the Education of Gifted Young Scientists*, 8(2), 743-755. <https://doi.org/10.17478/jegys.650344>

Anazifa, R. and Djukri, D. (2017). Project- based learning and problem-based learning: are they effective to improve student's thinking skills?. *Jurnal Pendidikan Ipa Indonesia*, 6(2), 346. <https://doi.org/10.15294/jpii.v6i2.11100>

Anggito, A., Pujiastuti, P., & Gularso, D. (2021). The effect of video project-based learning on students' critical thinking skills during the covid-19 pandemic. *Al-Ishlah Jurnal Pendidikan*, 13(3), 1858-1867. <https://doi.org/10.35445/alishlah.v13i3.772>

Ashfahani, A., Haryono, H., & Kustiono, K. (2020). The effectiveness of project based learning and discovery learning with modul to improve learning outcome for autocad subject. *Innovative Journal of Curriculum and Educational Technology*, 9(2), 72-77. <https://doi.org/10.15294/ijcet.v9i2.39460>

Assidiq, M. (2022). Implementing project-based learning in a hybrid setting: the effectuality of the efl students' reading comprehension. *SHS Web of Conferences*, 149, 01058. <https://doi.org/10.1051/shsconf/202214901058>

Astuti, D., Syukri, S., Nurfaidah, S., & Atikah, D. (2021). Efl students' perceptions of the benefits of project-based learning in translation class. *International Journal of Transdisciplinary Knowledge*, 2(1), 12-26. <https://doi.org/10.31332/ijtk.v2i1.14>

Barrows, H. (1986). A taxonomy of problem-based learning methods. *Medical Education*, 20(6), 481-486. <https://doi.org/10.1111/j.1365-2923.1986.tb01386.x>

Bate, E., Hommes, J., Duvivier, R., & Taylor, D. (2013). Problem-based learning (pbl): getting the most out of your students – their roles and responsibilities: amee guide no. 84. *Medical Teacher*, 36(1), 1-12. <https://doi.org/10.3109/0142159x.2014.848269>

Bensley, D., Crowe, D., Bernhardt, P., Buckner, C., & Allman, A. (2010). Teaching and assessing critical thinking skills for argument analysis in psychology. *Teaching of Psychology*, 37(2), 91-96. <https://doi.org/10.1080/00986281003626656>

Birjandi, P. and Alizadeh, I. (2012). Manifestation of critical thinking skills in the english textbooks employed by language institutes in iran. *International Journal of Research Studies in Language Learning*, 2(1). <https://doi.org/10.5861/ijrsll.2012.100>

Cahyani, N. (2021). Effectiveness of project-based learning models in improving students' creativity (a literature review). *The Art of Teaching English as a Foreign Language*, 1(2), 75-79. <https://doi.org/10.36663/tatefl.v1i2.107>

Caton, A., Bradshaw-Wardis, D., & Savenye, W. (2022). Future directions for digital literacy fluency using cognitive flexibility research: a review of selected digital literacy paradigms and theoretical frameworks. *Journal of Learning for Development*, 9(3), 381-393. <https://doi.org/10.56059/jl4d.v9i3.818>

Chard, D., Vaughn, S., & Tyler, B. (2002). A synthesis of research on effective interventions for building reading fluency with elementary students with learning disabilities. *Journal of Learning Disabilities*, 35(5), 386-406. <https://doi.org/10.1177/00222194020350050101>

Chiang, C. and Lee, H. (2016). The effect of project-based learning on learning motivation and problem-solving ability of vocational high school students. *International Journal of Information and Education Technology*, 6(9), 709-712. <https://doi.org/10.7763/ijiet.2016.v6.779>

Chun, M., Kang, K., Kim, Y., & Kim, Y. (2015). Theme-based project learning: design and application of convergent science experiments. *Universal Journal of Educational Research*, 3(11), 937-942. <https://doi.org/10.13189/ujer.2015.031120>

Cismaru, D., Gazzola, P., Ciochino, R., & Leovaridis, C. (2018). The rise of digital intelligence: challenges for public relations education and practices. *Kybernetes*, 47(10), 1924-1940. <https://doi.org/10.1108/k-03-2018-0145>

D'Antoni, A., Zipp, G., Olson, V., & Cahill, T. (2010). Does the mind map learning strategy facilitate information retrieval and critical thinking in medical students?. *BMC Medical Education*, 10(1). <https://doi.org/10.1186/1472-6920-10-61>

Duran, M. and Dökme, İ. (2016). The effect of the inquiry-based learning approach on student's critical thinking skills. *Eurasia Journal of Mathematics Science and Technology Education*, 12(12). <https://doi.org/10.12973/eurasia.2016.02311a>

Estriégana, R., Merodio, J., Ramírez, R., & Barchino, R. (2021). Analysis of cooperative skills development through relational coordination in a gamified online learning environment. *Electronics*, 10(16), 2032. <https://doi.org/10.3390/electronics10162032>

Farcis, F., Budi, G., & Wijayanti, E. (2022). Effect of project-based learning and science literacy ability on critical thinking skills in virtual learning of the thermodynamics course. *JPPS (Jurnal Penelitian Pendidikan Sains)*, 12(1), 56-68. <https://doi.org/10.26740/jpps.v12n1.p56-68>

Fikriyati, A., Agustini, R., & Suyatno, S. (2022). Pre-service science teachers' critical thinking dispositions and critical thinking skills.. <https://doi.org/10.2991/assehr.k.211229.028>

Fitriani, H., Samsuri, T., Rachmadiarti, F., & Raharjo, R. (2022). Characteristics of evaluation-process biology learning tools based on conceptual problem-based learning models to train critical thinking skills. *Jurnal Penelitian Pendidikan Ipa*, 8(1), 269-276. <https://doi.org/10.29303/jppipa.v8i1.1168>

Garstki, K. (2022). Teaching for data reuse and working toward digital literacy in archaeology. *Advances in Archaeological Practice*, 10(2), 177-186. <https://doi.org/10.1017/aap.2022.3>

Guntur, M. and Retnawati, H. (2020). Beginner teacher's perception of application of project-based learning in mathematics learning. *Jipm (Jurnal Ilmiah Pendidikan Matematika)*, 8(2), 108. <https://doi.org/10.25273/jipm.v8i2.5048>

Halpern, D. (1998). Teaching critical thinking for transfer across domains: disposition, skills, structure training, and metacognitive monitoring.. *American Psychologist*, 53(4), 449-455. <https://doi.org/10.1037/0003-066x.53.4.449>

Hardian, H. and Chamisijatin, L. (2019). Project-based learning through edmodo: improving critical thinking and histology concepts. *Biosfer*, 12(1), 58-69. <https://doi.org/10.21009/biosferjpb.v12n1.58-69>

Heliawati, L., Lidiawati, L., & Pursitasari, I. (2022). Articulate storyline 3 multimedia based on gamification to improve critical thinking skills and self-regulated learning. *International Journal of Evaluation and Research in Education (Ijere)*, 11(3), 1435. <https://doi.org/10.11591/ijere.v11i3.22168>

Herasymenko, L. and Muravska, S. (2019). Results of measuring critical thinking skills of first year student pilots. *Scientific Bulletin of Flight Academy Section Pedagogical Sciences*, (6), 42-46. <https://doi.org/10.33251/2522-1477-2019-6-42-46>

Huber, C. and Kuncel, N. (2016). Does college teach critical thinking? a meta-analysis. *Review of Educational Research*, 86(2), 431-468. <https://doi.org/10.3102/0034654315605917>

Huysken, K., Olivey, H., McElmurry, K., Ming, G., & Avis, P. (2019). Assessing collaborative, project-based learning models in introductory science courses. *Journal of the Scholarship of Teaching and Learning*, 19(1). <https://doi.org/10.14434/josotl.v19i1.26777>

Hyytinen, H., Toom, A., & Postareff, L. (2018). Unraveling the complex relationship in critical thinking, approaches to learning and self-efficacy beliefs among first-year educational science students. *Learning and Individual Differences*, 67, 132-142. <https://doi.org/10.1016/j.lindif.2018.08.004>

Ijirana, I., Aminah, S., Supriadi, S., & Magfirah, M. (2022). Critical thinking skills of chemistry education students in team project-based stem-metacognitive skills learning during the covid19 pandemic. *Journal of Technology and Science Education*, 12(2), 397. <https://doi.org/10.3926/jotse.1697>

Imai, P., Kresyman, S., & Asadoorian, J. (2016). Factors influencing dental educators as they develop problem-based learning cases. *Journal of Dental Education*, 80(6), 731-740. <https://doi.org/10.1002/j.0022-0337.2016.80.6.tb06136.x>

Jalinus, N., Nabawi, R., & Mardin, A. (2017). The seven steps of project based learning model to enhance productive competences of vocational students.. <https://doi.org/10.2991/ictvt-17.2017.43>

Karami, M. and Shakurnia, A. (2021). Critical thinking disposition in the pharmacy faculty members of ahvaz jundishapur university of medical sciences, iran. *Educational Research in Medical Sciences*, 9(2). <https://doi.org/10.5812/erm.109691>

Kause, M., Sutarto, J., & Kustiono, K. (2022). Implementation of web-assisted project based learning model learning to improve critical thinking skills and science process skills. *Jurnal Pendidikan Mipa*, 23(4), 1598-1609. <https://doi.org/10.23960/jpmipa/v23i4.pp1598-1609>

Khalid, L., Bucheerei, J., & Issah, M. (2021). Pre-service teachers' perceptions of barriers to promoting critical thinking skills in the classroom. *Sage Open*, 11(3), 215824402110360. <https://doi.org/10.1177/21582440211036094>

Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: a review of the literature. *Improving Schools*, 19(3), 267-277. <https://doi.org/10.1177/1365480216659733>

Kolomitz, K. and Cabellon, E. (2016). A strategic necessity: building senior leadership's fluency in digital technology. *New Directions for Student Services*, 2016(155), 47-57. <https://doi.org/10.1002/ss.20182>

Kwiatkowska, W. and Wiśniewska-Nogaj, L. (2022). Digital skills and online collaborative learning: the study report. *The Electronic Journal of E-Learning*, 20(5), 510-522. <https://doi.org/10.34190/ejel.20.5.2412>

Magno, C. (2010). The role of metacognitive skills in developing critical thinking. *Metacognition and Learning*, 5(2), 137-156. <https://doi.org/10.1007/s11409-010-9054-4>

Mahbubah, K. and Hermita, N. (2019). Implementation of critical thinking test by two-tier test format on heat transfer. *Science Education and Application Journal*, 1(1), 34. <https://doi.org/10.30736/seaj.v1i1.95>

Maknuunah, L., Kuswandi, D., & Soepriyanto, Y. (2021). Project-based learning integrated with design thinking approach to improve students' critical thinking skill.. <https://doi.org/10.2991/assehr.k.211210.025>

Mehta, C. (2020). Flipping out and digging in: combining the flipped class and project-based learning to teach adult development. *The International Journal of Aging and Human Development*, 91(4), 362-372. <https://doi.org/10.1177/0091415020919997>

Mislia, T., Indartono, S., & Mallisa, V. (2019). Improving critical thinking among junior high school students through assessment of higher level thinking skills.. <https://doi.org/10.2991/icossce-icsmc-18.2019.58>

Moradi, H. and He-fang, C. (2019). Digital storytelling in language education. *Behavioral Sciences*, 9(12), 147. <https://doi.org/10.3390/bs9120147>

Mulyanto, H., Gunarhadi, G., & Indriayu, M. (2018). The effect of problem based learning model on student mathematics learning outcomes viewed from critical thinking skills. *International Journal of Educational Research Review*, 3(2), 37-45. <https://doi.org/10.24331/ijere.408454>

Muna, F. and Aziz, I. (2021). Mastering students' speaking skill using inquiry online project-based strategy. *Indonesian Journal of Instructional Media and Model*, 3(1), 1. <https://doi.org/10.32585/ijimm.v3i1.984>

Nainggolan, E. (2020). University students' critical thinking ability in listening skill. *Getsempena English Education Journal*, 7(2), 340-358. <https://doi.org/10.46244/geej.v7i2.1022>

Naviri, S., Sumaryanti, S., & Paryadi, P. (2021). Explanatory learning research: problem-based learning or project-based learning?. *Acta Facultatis Educationis Physicae Universitatis Comenianae*, 61(1), 107-121. <https://doi.org/10.2478/afepuc-2021-0010>

Nor, H., Sihes, A., & Hamidon, M. (2021). Implementation of the critical thinking skills in arabic language teaching and learning: a preliminary study. *International Journal of Academic Research in Business and Social Sciences*, 11(9). <https://doi.org/10.6007/ijarbst/v11-i9/11109>

Nor, H. and Sihes, A. (2022). Critical thinking in teaching arabic as a foreign language; teacher's competence. *International Journal of Academic Research in Business and Social Sciences*, 12(8). <https://doi.org/10.6007/ijarbst/v12-i8/14209>

Norman, G. and Schmidt, H. (1992). The psychological basis of problem-based learning. *Academic Medicine*, 67(9), 557-65. <https://doi.org/10.1097/00001888-199209000-00002>

Norman, G. and Schmidt, H. (2000). Effectiveness of problem-based learning curricula: theory, practice and paper darts. *Medical Education*, 34(9), 721-728. <https://doi.org/10.1046/j.1365-2923.2000.00749.x>

Oyler, D. and Romanelli, F. (2014). The fact of ignorance revisiting the socratic method as a tool for teaching critical thinking. *American Journal of Pharmaceutical Education*, 78(7), 144. <https://doi.org/10.5688/ajpe787144>

Papathanasiou, I., Kleisiaris, C., Fradelos, E., Kakou, K., & Kourkouta, L. (2014). Critical thinking: the development of an essential skill for nursing students. *Acta Informatica Medica*, 22(4), 283. <https://doi.org/10.5455/aim.2014.22.283-286>

Partido, B. and Soto, I. (2019). Association between critical thinking and academic performance in dental hygiene students. *Journal of Dental Education*, 83(1), 32-38. <https://doi.org/10.21815/jde.019.004>

Permana, T., Hindun, I., Roffi'ah, N., & Azizah, A. (2019). Critical thinking skills: the academic ability, mastering concepts, and analytical skill of undergraduate students. *Jpbi (Jurnal Pendidikan Biologi Indonesia)*, 5(1), 1-8. <https://doi.org/10.22219/jpbi.v5i1.7626>

Plass, J., O'Keefe, P., Homer, B., Case, J., Hayward, E., Stein, M., ... & Perlin, K. (2013). The impact of individual, competitive, and collaborative mathematics game play on learning, performance, and motivation.. *Journal of Educational Psychology*, 105(4), 1050-1066. <https://doi.org/10.1037/a0032688>

Profetto-McGrath, J. (2003). The relationship of critical thinking skills and critical thinking

dispositions of baccalaureate nursing students. *Journal of Advanced Nursing*, 43(6), 569-577. <https://doi.org/10.1046/j.1365-2648.2003.02755.x>

Protopapas, A., Katopodi, K., Altani, A., & Georgiou, G. (2018). Word reading fluency as a serial naming task. *Scientific Studies of Reading*, 22(3), 248-263. <https://doi.org/10.1080/10888438.2018.1430804>

Rajan, K., Gopanna, A., & Thomas, S. (2019). A project based learning (pbl) approach involving pet recycling in chemical engineering education. *Recycling*, 4(1), 10. <https://doi.org/10.3390/recycling4010010>

Ramli, F., Ayub, A., Zulnaidi, H., Salim, N., & Gopal, K. (2020). Impact of problem-based learning strategy on students' mathematical value among secondary school students. *Universal Journal of Educational Research*, 8(8), 3295-3302. <https://doi.org/10.13189/ujer.2020.080801>

Riggio, M. (2021). Computation and learning partnerships: lessons from wood architecture, engineering, and construction integration. *Education Sciences*, 11(3), 124. <https://doi.org/10.3390/educsci11030124>

Rusnawati, M., Santyasa, I., & Tegeh, I. (2021). The effect of project based e-learning models toward learning outcomes and critical thinking skills of vocational high school students. *JPP (Jurnal Pendidikan Dan Pembelajaran)*, 27(2), 57-64. <https://doi.org/10.17977/um047v27i22020p057>

Setiawati, H. and Corebima, A. (2017). Empowering critical thinking skills of the students having different academic ability in biology learning of senior high school through pq4r - tps strategy. *The International Journal of Social Sciences and Humanities Invention*. <https://doi.org/10.18535/ijsshi/v4i5.09>

Shishigu, A., Haile, B., Ayalew, B., & Kuma, S. (2016). The effect of problem based learning (pbl) instruction on students' motivation and problem solving skills of physics. *Eurasia Journal of Mathematics Science and Technology Education*, 13(3). <https://doi.org/10.12973/eurasia.2017.00647a>

Shrestha, D., Lohani, S., & Adhikari, R. (2021). Analyzing effectiveness of active learning through project-based learning approach in university level ict courses. *Journal of Engineering Issues and Solutions*, 1(1), 59-69. <https://doi.org/10.3126/joeis.v1i1.36819>

Simpson, E. and Courtney, M. (2002). Critical thinking in nursing education: literature review. *International Journal of Nursing Practice*, 8(2), 89-98. <https://doi.org/10.1046/j.1440-172x.2002.00340.x>

Simpson, E. and Courtney, M. (2008). Implementation and evaluation of critical thinking strategies to enhance critical thinking skills in middle eastern nurses. *International Journal of Nursing Practice*, 14(6), 449-454. <https://doi.org/10.1111/j.1440-172x.2008.00719.x>

Sirisrimangkorn, L. (2018). The use of project-based learning focusing on drama to promote speaking skills of efl learners. *Advances in Language and Literary Studies*, 9(6), 14. <https://doi.org/10.7575/aiac.all.v.9n.6p.14>

Situmorang, M., Sinaga, M., Sitorus, M., & Sudrajat, A. (2022). Implementation of project-based learning innovation to develop students' critical thinking skills as a strategy to achieve analytical chemistry competencies. *Indian Journal of Pharmaceutical Education and Research*, 56(1s), s41-s51. <https://doi.org/10.5530/ijper.56.1s.41>

Solihati, N. and Hikmat, A. (2018). Critical thinking tasks manifested in indonesian language textbooks for senior secondary students. *Sage Open*, 8(3), 215824401880216. <https://doi.org/10.1177/2158244018802164>

Ströbel, J. and Barneveld, A. (2009). When is pbl more effective? a meta-synthesis of meta-analyses comparing pbl to conventional classrooms. *Interdisciplinary Journal of Problem-Based Learning*, 3(1). <https://doi.org/10.7771/1541-5015.1046>

Suteja, S. and Setiawan, D. (2022). Students' critical thinking and writing skills in project-based learning. *International Journal of Educational Qualitative Quantitative Research*, 1(1), 16-22. <https://doi.org/10.58418/ijeqqr.v1i1.5>

Tajudin, N. and Chinnappan, M. (2016). The link between higher order thinking skills,

representation and concepts in enhancing timss tasks. *International Journal of Instruction*, 9(2), 199-214. <https://doi.org/10.12973/iji.2016.9214a>

Thoermer, A. and Williams, L. (2012). Using digital texts to promote fluent reading. *The Reading Teacher*, 65(7), 441-445. <https://doi.org/10.1002/trtr.01065>

Trisdiono, H., Siswandari, S., Suryani, N., & Joyoatmojo, S. (2019). Multidisciplinary integrated project-based learning to improve critical thinking skills and collaboration. *International Journal of Learning Teaching and Educational Research*, 18(1), 16-30. <https://doi.org/10.26803/ijlter.18.1.2>

Ummah, S., In'am, A., & Azmi, R. (2019). Creating manipulatives: improving students' creativity through project-based learning. *Journal on Mathematics Education*, 10(1), 93-102. <https://doi.org/10.22342/jme.10.1.5093.93-102>

Uslu, A. and Uslu, N. (2021). Improving primary school students' creative writing and social-emotional learning skills through collaborative digital storytelling. *Acta Educationis Generalis*, 11(2), 1-18. <https://doi.org/10.2478/atd-2021-0009>

Usmeli, U. and Amini, R. (2022). Creative project-based learning model to increase creativity of vocational high school students. *International Journal of Evaluation and Research in Education (Ijere)*, 11(4), 2155. <https://doi.org/10.11591/ijere.v11i4.21214>

Van, V. and My, N. (2019). Critical thinking - an essential skill for english pedagogical major students: review and applications. *Ho Chi Minh City Open University Journal of Science - Social Sciences*, 9(2), 45-52. <https://doi.org/10.46223/hcmcoujs.soci.en.9.2.260.2019>

Walker, S. and Brown, R. (2020). Critical thinking on technology use: higher education course design to promote personal, professional and societal change.. <https://doi.org/10.4995/head20.2020.11300>

Wei, C., Pitafi, A., Kanwal, S., Ali, A., & Ren, M. (2020). Improving employee agility using enterprise social media and digital fluency: moderated mediation model. *Ieee Access*, 8, 68799-68810. <https://doi.org/10.1109/access.2020.2983480>

Wulandari, I., Muldayanti, N., & Setiadi, A. (2020). Project and problem based learning on students' critical thinking skills at cell material. *Jpbio (Jurnal Pendidikan Biologi)*, 5(2), 127-139. <https://doi.org/10.31932/jpbio.v5i2.580>

Zanden, P., Denessen, E., Cillessen, A., & Meijer, P. (2020). Fostering critical thinking skills in secondary education to prepare students for university: teacher perceptions and practices. *Research in Post-Compulsory Education*, 25(4), 394-419. <https://doi.org/10.1080/13596748.2020.1846313>