Education Studies and Teaching Journal (EDUTECH)

Vol 1(1) 2024 : 93-112

Transformative Impact: The Evolution of Learning through AI in Education

Dampak Transformatif: Evolusi Pembelajaran melalui AI dalam Pendidikan

Viviana Lisma Lestari

UIN Syarif Hidayatullah ,Jakarta

*viviana.lisma10@gmail.com

*Corresponding Author

ABSTRACT

Education has become a field increasingly integrated with artificial intelligence (AI), opening the door to innovation in learning and teaching processes. In this study, we conducted a systematic review of the existing literature to describe the basic concepts of AI in education and their implications. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method was used to organize the process of literature search, selection and analysis. The results of our review show that the use of AI in education has great potential to improve learning personalization, administrative efficiency, and teaching effectiveness. The implications of these findings highlight the need for a careful approach in integrating AI in educational curricula, as well as the importance of training educators in AI literacy.

Keywords: Artificial Intelligence, Education, Systematic Review, PRISMA, Personalized Learning, Administrative Efficiency.

ABSTRAK

Pendidikan telah menjadi bidang yang semakin terintegrasi dengan kecerdasan buatan (AI), membuka pintu bagi inovasi dalam proses pembelajaran dan pengajaran. Dalam penelitian ini, kami melakukan tinjauan sistematis terhadap literatur yang ada untuk menggambarkan konsep dasar AI dalam pendidikan serta implikasinya. Metode PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) digunakan untuk mengorganisir proses pencarian, seleksi, dan analisis literatur. Hasil tinjauan kami menunjukkan bahwa penggunaan AI dalam pendidikan memiliki potensi besar untuk meningkatkan personalisasi pembelajaran, efisiensi administrasi, dan efektivitas pengajaran. Implikasi dari temuan ini menyoroti perlunya pendekatan yang hati-hati dalam mengintegrasikan AI dalam kurikulum pendidikan, serta pentingnya pelatihan pendidik dalam literasi AI.

Kata kunci: Kecerdasan Buatan, Pendidikan, Tinjauan Sistematis, PRISMA, Personalisasi Pembelajaran, Efisiensi Administrasi.

1. Introduction

The integration of Artificial Intelligence (AI) in education has brought transformative impacts on learning processes. Al technologies have been increasingly utilized in educational settings to enhance teaching methods, personalize learning experiences, and improve educational outcomes. Studies have shown that AI can positively influence students' educational experiences by addressing instructional challenges, promoting social interaction, and providing personalized instruction (Akgün & Greenhow, 2021; Kang, 2023; Boscardin, 2023). The use of AI in education has evolved from basic automation to more advanced self-learning systems, allowing for adaptive learning based on individual student needs (Luckin & Cukurova, 2019).

Al applications in education have been designed to cater to various educational levels, from K-12 to higher education institutions. For instance, Al literacy curriculums have been

developed to introduce children to AI concepts, applications, and ethics, aiming to shape their perceptions of technology and engineering from an early age (Su, 2023; Williams et al., 2019). Furthermore, AI has been instrumental in revolutionizing traditional teaching methods by providing innovative tools such as ChatGPT, which have been shown to have cognitive effects on learning and memory (Bai, 2023). Additionally, AI technologies like ChatGPT have been explored for their potential impact on medical education, highlighting the broad implications of AI across different industries, including healthcare and education (Boscardin, 2023).

The adoption of AI in education has also led to the emergence of new pedagogical approaches and learning systems. Researchers have emphasized the importance of interdisciplinary collaborations to ensure that AI in education delivers the promised benefits and advancements in learning sciences. Moreover, the use of AI models like ChatGPT has sparked discussions on the implications for universities, scholars, and students, shedding light on the evolving landscape of educational technologies and their impact on employability and learning outcomes. In conclusion, the evolution of learning through AI in education signifies a paradigm shift towards more personalized, adaptive, and innovative educational practices. By leveraging AI technologies, educators can create engaging learning environments, tailor instruction to individual student needs, and foster a deeper understanding of complex concepts. As AI continues to advance, its transformative impact on education is expected to reshape traditional teaching methodologies and enhance the overall learning experience for students.

Artificial Intelligence (AI) is transforming the field of education, offering potential to revolutionize traditional teaching and learning processes. The integration of AI in education has led to the emergence of research clusters focusing on artificial intelligence, pedagogical issues, and technological advancements (Bozkurt et al., 2021). Al applications in education include adaptive learning, personalization, deep learning algorithms, human-AI interaction, and the use of AI-generated data (Bozkurt et al., 2021). These advancements have enabled automated tutoring, personalized learning experiences, student knowledge assessment, and the automation of tasks typically performed by instructors (August & Tsaima, 2021).

Furthermore, AI technologies such as ChatGPT have been recognized as tools with the capacity to revolutionize education by reshaping conventional teaching methods (Adıgüzel et al., 2023). While the use of AI in education presents challenges, ethical considerations must be addressed, particularly in K-12 settings where issues like privacy and bias may arise (Akgün & Greenhow, 2021). Nevertheless, the benefits of AI in education are extensive, offering opportunities to enhance learning environments, provide personalized education, and improve educational efficiency (Zhang, 2023).

In higher education, the era of AI necessitates a transition from traditional educational models to smart education systems that align with AI technologies, providing students with more personalized and tailored learning experiences (Li & Yang, 2023). AI in education aims to augment human intelligence rather than replace it, supporting decision-making processes and enhancing teaching and learning outcomes (Cukurova et al., 2019).

The potential impact of AI in education spans various disciplines, including engineering, mathematics, language education, and medical education, where AI technologies can facilitate learning processes and enhance educational experiences (Sadiku et al., 2021). The integration of AI in education demands a profound understanding of learning theories and cognitive processes to promote effective learning outcomes (Gibson et al., 2023). In conclusion, the evolution of learning through AI in education signifies a shift towards personalized, efficient, and transformative educational experiences. By thoughtfully and ethically leveraging AI technologies, educators can unlock the full potential of AI to enhance teaching practices, improve learning outcomes, and create dynamic educational environments.

The problematic phenomenon that triggered the need for this research can be identified from the significant shift in learning approaches triggered by the integration of

artificial intelligence (AI) in educational contexts. Along with the development of AI technology, conventional learning methods are undergoing significant transformation, raising challenges and questions that require deep understanding. Although there has been significant progress in the application of AI in education, such as the use of AI tutoring systems, adaptive evaluation, and personalization of learning, there is still a need to explore its implications and impact holistically.

The presence of AI in education creates space for further research to explore the ethical, social, psychological and pedagogical implications of the integration of this technology in the learning process. For example, questions regarding how AI influences interactions between teachers and students, how AI shapes student learning motivation, and how AI plays a role in developing students' critical and creative skills. Through further research, it is hoped that we can better understand how AI can be used effectively to improve the quality of education and strike a balance between technological innovation and the need for holistic and sustainable learning.

The research gap that was the motivation for conducting research was the need to fill the existing knowledge gap in the literature related to the transformational impact of using artificial intelligence (AI) in the educational context. Although much research has been conducted in this area, the existing literature still lacks a thorough understanding of how developments in AI specifically impact traditional learning paradigms. Although several studies have revealed the positive impact of AI in improving learning efficiency, tailoring curricula, and providing individually tailored learning experiences, there is still a lack of clarity in understanding the broader implications of AI integration in traditional learning contexts.

Previous research has tended to focus on specific applications of AI technology in education, such as AI tutoring systems or adaptive evaluation, without thoroughly investigating how these changes affect the way we understand, teach, and learn within traditional learning frameworks. Therefore, there is an urgent need to fill this knowledge gap by adopting a holistic and in-depth approach to understand the shift in learning paradigms occurring due to AI integration. By comprehensively investigating and analyzing the impact of AI, this research aims to contribute a deeper understanding of the evolution of learning through AI and its impact on traditional learning paradigms.

The aim of this research is to systematically investigate and analyze the impact of using artificial intelligence (AI) in an educational context on traditional learning paradigms. By adopting a systematic literature review approach, this research aims to present an in-depth understanding of how the evolution of AI has changed the way we learn and teach in educational contexts. Within this framework, the research will identify, evaluate and synthesize relevant literature on the use of AI in education, with a particular focus on its impact on established learning paradigms.

Through this approach, the research aims to comprehensively understand the changes that occur in traditional learning approaches as a result of AI integration. It includes analysis of various aspects of learning, including the role of the teacher, curriculum structure, evaluation methods, and student learning experiences. By systematically investigating existing literature, this research is expected to identify trends, challenges and opportunities that emerge along with the development of AI in the educational context.

Therefore, the aim of this research is not only limited to presenting the findings, but also to providing in-depth insights for educational practitioners, researchers, and decision makers to understand the implications of the transformation of learning through AI. In doing so, it is hoped that this research will make a significant contribution to our understanding of how AI technologies impact traditional learning paradigms, as well as identify directions for further research in this area.

The Research Question posed is, "How has the development of the use of artificial intelligence (AI) in educational contexts affected traditional learning paradigms?" This question

highlights the main focus of research to identify and analyze the transformational impact of using AI in education. By formulating this question, the research places attention on the changes that occur in established learning paradigms as a result of the integration of AI in educational contexts.

This question reflects a desire to comprehensively understand how the use of AI technology has changed the way we teach and learn in traditional educational contexts. This includes tracking changes in teacher roles, learning strategies, student-teacher interactions, and evaluation and assessment. By focusing attention on transformational impacts, this research aims to provide an in-depth understanding of the changes occurring and their implications for sustainable learning practices.

This research question takes center stage to explore the broader implications of the transformation of learning through artificial intelligence (AI) in education. Through a systematic literature review approach, this research not only aims to answer the Research Question directly, but also to dig deeper into trends, patterns and differences in learning approaches before and after AI integration.

By guiding an investigation into relevant literature, this research seeks to identify changes that occur in traditional learning paradigms, both in the context of teaching practices and student learning experiences. Careful analysis of the findings will provide a deeper understanding of how the evolution of AI has influenced established learning approaches.

Furthermore, this research also aims to uncover new opportunities and challenges that arise along with the development of AI in the educational context. Thus, through careful investigation and thorough analysis, this research is expected to provide valuable insights for educational practitioners, researchers, and decision makers in understanding and managing learning transformation through AI.

The novelty of this research lies in its systematic approach in exploring and analyzing existing literature to present a comprehensive understanding of the evolution of learning through artificial intelligence (AI) in educational contexts. As a first step, this research establishes a well-structured framework to organize the relevant literature, enabling an in-depth analysis of the changes and impacts of AI use in education. This approach allows researchers to identify trends, patterns and main findings from various literature sources, as well as to present the findings in a structured and systematic manner.

The new contribution or approach taken in this research is to provide an in-depth and structured review of the impact of using AI in education. In dealing with the complexity of this topic, this research not only focuses on the technical aspects of using AI in learning, but also considers its ethical, social and psychological implications. By taking these dimensions into account, this research presents a holistic and comprehensive view of how the evolution of AI has affected traditional learning paradigms.

In addition, this research also presents a new contribution by exploring the implications of the transformation of learning through AI in the educational context. By providing a deeper understanding of the changes taking place, this research can provide a basis for the development of education policies that consider the role of AI in improving the overall quality of education. Thus, it is hoped that this research can make a significant contribution to our understanding of the impact of using AI in the transformation of learning in education.

2. Research Methods

The research method applied in this study is based on a systematic approach which aims to present a comprehensive and structured literature review. The initial stage in this methodology involves the process of collecting articles from international databases that have an established reputation in the fields of education and artificial intelligence, such as Scopus. The collection of articles was carried out through a thorough search using carefully selected

keywords, designed to cover a broad spectrum of relevant aspects related to the use of artificial intelligence in educational contexts.

This keyword selection process involves in-depth consideration of various terminology and concepts related to the field of study being studied. Once appropriate keywords had been determined, a careful search for articles was conducted within the selected databases to ensure the completeness and relevance of the results. This step is critical to ensuring that the group of articles selected for analysis includes a wide range of perspectives and research relevant to understanding the use of artificial intelligence in education.

The next step in the research process is to establish clear inclusion and exclusion criteria to ensure the completeness and relevance of the articles obtained. These inclusion and exclusion criteria aim to provide clear guidance in selecting articles to consider in further analysis. Articles that meet the inclusion criteria, namely those that are relevant to the research topic and meet certain quality standards, will be considered for inclusion in the literature review. Conversely, articles that are irrelevant or do not meet the criteria will be excluded from the review to ensure that the focus of the analysis is maintained and the results obtained are of good quality.

This process is an important step in ensuring the validity and reliability of research results. By establishing clear inclusion and exclusion criteria, research can reduce the risk of bias and ensure that only relevant and high-quality articles are included in the analysis. Thus, this process not only helps screen articles for consideration, but also ensures that the research results are well-founded and reliable.

Furthermore, to ensure transparency and accountability in the article selection process, this research applies the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method. The PRISMA method, which has been widely recognized in the scientific literature as a leading guide for conducting systematic reviews and meta-analyses, was used to organize the process of systematic search, selection and presentation of articles. By following the guidelines provided by PRISMA, this research ensures that each step in the article selection process is carried out to a high standard and is structured.

The use of the PRISMA method provides a clear and structured framework for reporting the results of literature reviews, allowing researchers to systematically record each stage of the article selection process. This includes searching for articles, screening based on inclusion and exclusion criteria, and presenting selection results in a transparent manner. Thus, this research not only ensures the validity and reliability of its results, but also allows the article selection process carried out to be reproducible and verified by other researchers in this field, increasing the scientific integrity of this research as a whole.

3. Findings and Discussion

3.1. Basic concepts of AI in education

Artificial Intelligence (AI) has been increasingly integrated into the field of education, offering various benefits and opportunities for enhancing the learning experience. Research has highlighted several key aspects of AI in education. Firstly, AI plays a crucial role in improving the cognitive abilities of students, fostering innovation, enhancing resource utilization, and advancing the overall educational and teaching processes ("Analysis of the Application of Artificial Intelligence in Education and Teaching", 2023). Moreover, the application of AI in education extends to areas such as personalized learning, efficient administration, and global learning, leading to improved educational outcomes (Chen et al., 2020).

Furthermore, the implementation of AI in STEM-based creative learning has been emphasized as a means to enhance the learning process and facilitate cognitive, affective, and psychometric improvements, especially in the era of Society 5.0 (Sari & Purwanta, 2021). Additionally, AI has been recognized for its potential in automating administrative tasks,

providing personalized education, identifying areas that require reinforcement, and supporting students both inside and outside the classroom (Hinojo-Lucena et al., 2019).

Educators' perspectives on AI education have also been explored, focusing on enhancing AI literacy among students by teaching fundamental AI concepts, raising awareness of AI's future implications in careers, and addressing ethical and social issues related to AI (Polak et al., 2022). Moreover, the necessity of AI education for K-12 students has been underscored due to the rapid advancements in AI technologies (Yau et al., 2022). In conclusion, the integration of AI in education presents a transformative opportunity to revolutionize teaching and learning processes, enhance student engagement and outcomes, and prepare students for the evolving technological landscape. By leveraging AI technologies effectively, educators can create more personalized, efficient, and engaging learning environments that cater to the diverse needs of students.

Artificial Intelligence (AI) has become a transformative technology in education, offering various benefits to enhance learning and teaching processes. By integrating AI into educational settings, it becomes possible to leverage computing technology to create more adaptive, personalized, and responsive learning environments (Wang et al., 2023). The introduction of AI in education not only enhances teaching efficiency but also enables personalized and autonomous learning experiences for students (Zheng & Badarch, 2022). AI applications in education cover student learning, teacher instruction, administrative tasks, and family education (Mahligawati, 2023).

The potential of AI in education is extensive, with studies exploring its applications in diverse fields such as physics education (Yang & Wang, 2020), physical education teaching, and curriculum design (Sadler, 2024). AI serves as a catalyst for transforming education, impacting areas like research, teaching, and publishing (Chen et al., 2020). The use of AI in education has led to improved efficiency, global learning opportunities, customized learning experiences, smarter content delivery, and enhanced administrative processes (Shaik et al., 2022).

Moreover, AI technologies like natural language processing methods are increasingly adopted for tasks such as education feedback analysis, assessment, grading, personalized teaching, and remote education (Hinojo-Lucena et al., 2019). The impact of AI in education is evident in its ability to automate administrative tasks, provide personalized education, identify areas needing reinforcement, offer student guidance, and utilize data intelligently for teaching and support (Marino et al., 2023).

As Al continues to evolve, its role in education is becoming more pronounced, with the potential to revolutionize traditional educational methods and practices. The future of education, especially in specialized areas like special education and clinical education, is expected to be significantly influenced by Al technologies (Banerjee et al., 2021; Gupta & Bhaskar, 2020). The adoption of Al-based teaching and learning solutions holds promise for enhancing teachers' understanding of students' learning needs and progress. In conclusion, the integration of Al in education represents a paradigm shift towards more efficient, personalized, and effective learning experiences. By harnessing the capabilities of Al, educational systems can adapt to individual student needs, optimize teaching processes, and pave the way for a more dynamic and responsive educational landscape.

The integration of Artificial Intelligence (AI) in education has been a topic of increasing interest and research from 2019 to 2024. Al technologies are being developed and applied in various educational settings to enhance learning experiences and outcomes. Researchers have highlighted the potential of AI to revolutionize education by providing innovative solutions to address complex educational challenges (Chichekian & Benteux, 2022). Al in education aims to improve the quality of educational outputs while reducing operational costs for institutions (Alenezi, 2023). By leveraging AI-powered tools and resources, educators and learners can access a wide range of technologies designed to enhance learning holistically (Xu & Ouyang, 2022).

Studies have shown that AI technologies, such as AI performance prediction models, can help identify at-risk students, personalize learning pathways, and optimize instructional design to improve student learning outcomes (Ouyang et al., 2023). Additionally, the development of AI tools like Chat GPT has the potential to transform how students engage with academic content and open up new possibilities for autonomous learning experiences (Fırat, 2023). AI technologies are reshaping educational practices by enabling dynamic, collaborative, and deeper knowledge exploration environments (Luckin & Cukurova, 2019).

Furthermore, the integration of AI into educational systems is not limited to traditional classroom settings but extends to online learning environments as well. AI applications in learning management systems have the potential to enhance online learning experiences and organizational structures (Firat, 2023). The use of AI in Computer-Supported Collaborative Learning (CSCL) approaches aims to enhance collaboration and learning processes through the integration of AI technologies (Suarez et al., 2023).

As AI continues to advance, educators are encouraged to increase their AI literacy to effectively leverage AI tools in educational settings (Boscardin, 2023). The integration of ethics alongside technical skills in AI courses is also emphasized to address the societal impacts of AI systems (Krakowski et al., 2022). Overall, the research from 2019 to 2024 underscores the transformative potential of AI in education, emphasizing the need for educators to adapt to the changing landscape of technology and embrace AI as a tool to enhance teaching and learning practices.

Personalization of learning through AI in education has emerged as a pivotal concept in enhancing student outcomes. By leveraging AI technology, educational systems can tailor learning experiences to individual students, accommodating diverse learning styles and needs (Hashim et al., 2022). This approach allows students to progress at their own pace and in a manner that aligns with their unique preferences, ultimately leading to improved learning outcomes (Hutson et al., 2022).

Recent advancements in AI in education have focused on personalized learning environments, where AI technologies are employed to cater to individual student needs (Abgaryan et al., 2023). These technologies analyze student preferences and performance data to provide customized learning materials and relevant recommendations, thereby promoting a more effective learning process (Vall & Araya, 2023). The application of AI in education has been shown to offer benefits such as improved learning outcomes, increased access, and reduced costs, highlighting the positive impact of personalized learning experiences facilitated by AI (Hutson et al., 2022).

Moreover, Al-guided systems are increasingly being utilized to create personalized educational trajectories tailored to the specific requirements of each student (Kochmar et al., 2021). By adapting the content and pace of lessons based on individual proficiency and learning styles, Al-powered tools offer personalized learning experiences that enhance student engagement and knowledge retention (Vall & Araya, 2023). This personalized approach to education is crucial for effective learning, as it acknowledges and accommodates the diverse aptitudes and knowledge levels of students (Harry, 2023). In conclusion, the integration of Al in education has revolutionized the concept of personalized learning, enabling educational systems to provide tailored learning experiences that cater to the individual needs and preferences of students. By leveraging Al technologies to analyze student data and adapt learning materials accordingly, educational institutions can enhance learning outcomes and promote a more engaging and effective learning environment.

Artificial Intelligence (AI) has significantly impacted education by facilitating the development of intelligent tutors that provide personalized and interactive learning experiences for students. These AI-driven tutors can identify common mistakes, offer immediate feedback, and adjust the learning approach to meet individual student needs (Hashim et al., 2022). Through the utilization of machine learning algorithms, AI plays a crucial

role in analyzing data to identify patterns in students' learning behaviors, preferences, and achievements, thereby enhancing personalized learning experiences (Harry, 2023).

Intelligent tutoring systems, such as the Intelligent Tutoring System (ITS), utilize AI to function as personal tutors or teachers, offering various examples, help messages, hints, and step-by-step demonstrations on-demand to aid students in completing learning tasks (Kim & Lee, 2022). Additionally, AI integration in education extends to machine translation tools, adaptive education systems, and intelligent tutoring systems, all of which contribute to enhancing learners' educational experiences (Chen et al., 2020).

The integration of AI and machine learning tools into online classrooms addresses challenges associated with the transition to remote learning, such as supporting students in self-regulating their learning, simplifying curriculum planning for teachers, and maintaining personalized interactions between students and educators (Yildirim et al., 2021). Furthermore, AI technologies have played a crucial role in enhancing the learning experiences of visually impaired students, demonstrating the potential for AI virtual assistants to enhance learning outcomes and instructor efficiency (Mina et al., 2023). In conclusion, the impact of AI on education is profound, with applications ranging from personalized learning platforms to automated assessment systems and AI-powered virtual assistants. These advancements not only improve the efficiency of educational processes but also cater to individual student needs, ultimately reshaping the landscape of modern education.

Predictive analytics in education, a crucial AI concept, utilizes historical data to predict future student behavior and achievements, assisting in designing personalized learning interventions and improving teaching effectiveness (Sun et al., 2022). This method involves monitoring students' learning data to anticipate their performance and establish academic early warning systems, enabling timely interventions and customized teaching strategies (Tu, 2020). Predictive analytics techniques are becoming increasingly precise in projecting student outcomes, leading to enhanced decision-making processes (Baker et al., 2022).

The role of AI in education goes beyond automation to enhancing human decision-making processes, emphasizing support rather than substitution through technologies like debate tutoring (Cukurova et al., 2019). By employing advanced analytics and machine learning, predictive analytics provides valuable insights for all educational levels, enhancing performance evaluation and information extraction (Bujang et al., 2021). The primary objectives of educational systems include predicting students' success and offering advantages during and after terms (Şekeroğlu et al., 2021).

In higher education, predictive analytics assists in allocating resources efficiently by focusing on students who could benefit the most from additional support, thereby enhancing operational efficiency (Bird et al., 2021). Learning analytics in higher education has progressed from diagnostics to predictive analytics, concentrating on various outcome measures such as student retention, progression, and employability (Axelsen et al., 2020). Predictive Learning Analytics (PLA) aims to identify at-risk students and improve learning outcomes (Herodotou et al., 2019).

Educational institutions can make well-informed decisions based on actual data through predictive analytics, leading to improved decision-making and actions by educators and institutions (Yürüm et al., 2022). By implementing predictive analytics, academic advising can transition to a student-centered approach, concentrating on enhancing student learning and success across all educational domains (Bowdre, 2020). Academic analytics, which integrates institutional data and predictive modeling, enables stakeholders to adjust academic behavior based on intelligent insights (Wang & Orr, 2019). In conclusion, predictive analytics in education, supported by AI technologies, plays a critical role in enhancing student outcomes, guiding interventions, and optimizing teaching strategies based on data-driven predictions.

Apart from that, AI technology is also used in developing adaptive educational content, which can adjust the level of difficulty and complexity of learning material according to student

abilities. This helps overcome the challenges of learning differentiation in heterogeneous classrooms, by allowing each student to learn at their own level.

Overall, the basic concepts of AI in education include personalization of learning, development of intelligent tutors, predictive analytics, and building adaptive educational content. Applying these concepts can help improve the quality of education, reduce learning gaps, and prepare students to face future challenges in the digital era.

3.2. Traditional learning paradigms and their evolution

Traditional learning paradigms have long been fundamental in areas such as memory assessment (Loewenstein et al., 2017). However, with the advancement of new technologies and methodologies, there has been a shift towards evolving these traditional paradigms. For example, the integration of machine learning in biomaterials research has transformed the traditional trial and error approach into a data-driven paradigm (Suwardi et al., 2021). Similarly, in the field of education, the transition to digital learning technologies has challenged traditional teaching paradigms, emphasizing the need for new policies to support modern learning approaches (Saykili, 2019).

The COVID-19 pandemic has accelerated the shift from traditional face-to-face learning to online paradigms, prompting a reevaluation of educational methodologies (Mbhiza, 2021; Sohel et al., 2021). This transition has highlighted the importance of interactivity and effectiveness in the new learning paradigm (Todri et al., 2020). Additionally, the emergence of game-based learning has introduced a novel digitally mediated approach that is reshaping traditional e-learning methods (Squire, 2009).

In the realm of cognitive psychology, discussions have arisen on the need to bridge the gap between autonomous and predetermined paradigms in evaluative learning, emphasizing the role of information sampling in the learning process (Hütter et al., 2022). Furthermore, exploration in translation studies has shown a shift towards embracing emerging technological approaches, transcending traditional cultural paradigms (Ali, 2023).

Overall, the evolution of traditional learning paradigms is evident across various disciplines, driven by advancements in technology, changes in educational landscapes, and the need for more effective and engaging learning methodologies. These shifts underscore the importance of adapting to new paradigms to meet the evolving demands of modern education and research.

3.3. The influence of the use of AI in education

The integration of artificial intelligence (AI) in education has been a topic of increasing interest and research from 2019 to 2024. Various studies have highlighted the potential benefits and challenges associated with utilizing AI technologies in educational settings. AI in education encompasses the use of machine learning, natural language processing, and generative AI to enhance the learning experience (Harry, 2023). The application of AI in education has shown positive effects on learning outcomes, equity, and quality in higher education (Akinwalere & Ivanov, 2022). Furthermore, AI has been found to enhance conceptual understanding, provide personalized instruction, promote social interaction, and improve assessment methods in physics education (Mahligawati, 2023).

While AI presents opportunities for improving educational processes, it also brings about ethical challenges, especially in K-12 settings (Akgün & Greenhow, 2021). Addressing these challenges requires a comprehensive understanding of the ethical implications of AI, strategies to manage privacy concerns, and preparation for the integration of AI technologies in educational institutions ("What ChatGPT means for universities: Perceptions of scholars and students", 2023). Additionally, the use of AI in higher education offers benefits such as streamlined enrollment, improved retention, organizational guidance, and support for

students, as well as better resource management and successful online training processes (Lukianets & Lukianets, 2023).

As AI continues to evolve, there is a growing need for research to focus on the effective integration of AI in classrooms, teacher education, and the development of adaptive AI systems that can cater to diverse teaching and learning contexts (Zhai & Nehm, 2023). Moreover, the design of AI instructional frameworks should consider obstacles to participation, interactive design thinking processes, teachers' knowledge, orienteering AI knowledge for social good, and a holistic understanding of teaching AI (Lin et al., 2022). In conclusion, the impact of AI in education is multifaceted, offering opportunities for enhancing learning experiences and improving educational outcomes, while also posing ethical challenges that need to be addressed for responsible AI integration in educational settings.

3.4. The development of the use of AI in education

Artificial Intelligence (AI) has made significant strides in the field of education in recent years. These advancements have been fueled by the expansion of AI technologies beyond traditional computer systems to encompass embedded systems, online platforms, and humanoid robots like cobots and chatbots (Chen et al., 2020). The integration of AI in education has given rise to intelligent tutoring systems, personalized virtual tutors, and two-way intelligent feedback mechanisms, all designed to enhance the quality of education (Wang et al., 2023). Leading countries such as China have mandated AI education in high school curricula, while the United States is also exploring various implementations of AI in education (Kurvinen et al., 2022).

Al's role in education has been explored across disciplines such as STEM education, where Al is leveraged to revolutionize instructional and learning processes (Xu & Ouyang, 2022). Moreover, Al has found applications in a wide array of educational domains including engineering, mathematics, language, surgical, robotics, computer science, and medical education, showcasing its versatility and impact (Sadiku et al., 2021). The incorporation of Al in higher education has shown promise in enriching teaching and learning experiences (Crompton & Song, 2021).

Despite the progress, ethical considerations surrounding AI integration in education are a subject of ongoing debate. Ethical challenges and dilemmas related to the use of AI in educational settings have been identified, underscoring the need to address these issues for responsible AI integration (Akgün & Greenhow, 2021). Additionally, there is a growing demand for educators and educational institutions to adapt their curricula and resources to equip students with the requisite knowledge and skills for success in an AI-driven workforce (Faruqe et al., 2022). In conclusion, the application of AI in education has experienced substantial growth and diversification, with a focus on enhancing learning experiences, improving educational outcomes, and preparing students for future workforce demands. As AI continues to evolve, collaboration among educators, policymakers, and researchers is crucial to tackle ethical considerations, develop effective AI-driven educational tools, and create a conducive environment for AI integration in education.

3.5. The influence of using AI on traditional learning paradigms

The integration of Artificial Intelligence (AI) into traditional learning paradigms has brought about a significant transformation in education. Al technologies have the potential to revolutionize teaching and learning processes across various educational sectors. Research has shown that AI applications in higher education encompass personalization, profiling, and computer science (Zawacki-Richter et al., 2019). These applications not only enhance the learning experience but also contribute to the efficiency and effectiveness of educational practices. Moreover, AI's impact on teaching and learning in higher education is considered a

technological revolution that will reshape the structure of education globally (Popenici & Kerr, 2017)

Al-enabled digital learning applications have been introduced to facilitate language learning, demonstrating the potential of AI to enhance continuous learning intentions among learners (Fu et al., 2020). Additionally, AI technologies, such as intelligent tutoring systems and automated assessment tools, have been utilized in STEM education to improve instructional quality and learning outcomes (Xu & Ouyang, 2022). The collaboration between human intelligence and AI in learning environments has the potential to provide new insights and support for learners (Järvelä et al., 2023).

Furthermore, the use of AI in education extends beyond traditional classroom settings. AI has been applied in medical education to enhance clinical decision-making and address challenges posed by reduced clinical exposure during the pandemic (Ishaaq, 2023). The potential impact of AI on medical education and clinical assistance highlights the need for innovative solutions to adapt to the evolving educational landscape. In conclusion, the incorporation of AI into traditional learning paradigms presents opportunities for personalized education, enhanced learning experiences, and improved educational outcomes. By leveraging AI technologies, educators can optimize teaching methods, provide tailored support to learners, and revolutionize the educational landscape.

3.6. Challenges and opportunities of using AI in education

Artificial Intelligence (AI) presents both challenges and opportunities in the field of education. The rapid pace of technological advancements in AI, particularly in algorithmic machine learning and autonomous decision-making, offers new opportunities for innovation (Dwivedi et al., 2021). However, the implementation of AI in education is not without obstacles. Challenges include assessing the effectiveness of AI in educational settings, as well as technical difficulties in developing AI applications (Chan & Zary, 2019).

The integration of AI in education has led to a paradigm shift in teaching and learning, offering unparalleled opportunities while also posing complex challenges (Alasadi & Baiz, 2023). In STEM education, the application of AI faces the challenge of integrating diverse AI techniques with complex educational elements to meet instructional and learning needs (Xu & Ouyang, 2022). AI has shown promise in enhancing instructional effectiveness and efficiency, particularly in tutoring systems designed to address challenges in one-on-one teacher-student interactions (Chen et al., 2020).

Educators are now tasked with balancing the utilization of AI capabilities with preserving the human-centric aspects of teaching (Rajaei, 2023). In medical education, AI plays a significant role, with studies exploring students' attitudes towards AI, its role in radiological education, and the challenges it can pose in this field (Wang et al., 2023). AI is increasingly being deployed in education to improve teaching practices and cater to students' learning needs (How & Hung, 2019).

AI, with its ability to mimic human cognitive behaviors, holds great potential to address challenging issues in STEM education (Zhai et al., 2023). While AI offers new opportunities for anatomical education, there are lessons to be learned from the deployment of AI tools in other domains to ensure inclusivity and effectiveness (Lazarus et al., 2022). Educators need to enhance their AI literacy to navigate the evolving landscape of AI technologies in education responsibly (Boscardin, 2023).

In conclusion, the use of AI in education is a double-edged sword, offering transformative opportunities while presenting intricate challenges. Educators must navigate these complexities to harness the full potential of AI in enhancing teaching and learning experiences.

3.7. Ethical, social, and psychological implications

The integration of Artificial Intelligence (AI) in education brings about transformative impacts on learning, yet it also raises various ethical, social, and psychological implications. Scholars have highlighted the importance of understanding and addressing these implications to ensure responsible and effective use of AI in educational settings ("What ChatGPT means for universities: Perceptions of scholars and students", 2023; Allen, 2023; Bearman et al., 2022).

Ethical considerations are paramount when implementing AI in education, especially concerning privacy, biases, security, and data limitations (Ishaaq, 2023). Educators play a crucial role in guiding students to comprehend how biases manifest in AI, the ethical implications involved, and strategies to mitigate these biases for fair AI utilization (Allen, 2023). Furthermore, the development of strategies to manage privacy concerns and the investigation of how educational institutions can best prepare for the integration of AI technologies are essential ("What ChatGPT means for universities: Perceptions of scholars and students", 2023).

From a social perspective, the impact of AI on education extends to various areas such as student learning experience, support, and enrollment management (Hannan, 2021). The social impact of the latest technology, including the ethics of AI, is emphasized, along with physical computing and technological problem-solving activities using AI (Park & Kwon, 2023). Additionally, the study of the social implications of AI in higher education is crucial, including understanding how AI influences learning and teaching relationships (Bearman et al., 2022).

Psychologically, the implications of AI in education are multifaceted. AI applications can influence student attitudes towards AI, with perceived usefulness and ease of use being predictive factors for students' acceptance and intention to use AI (Gado et al., 2021). Moreover, promoting learner interactions with AI as part of a sociotechnical ensemble can help build evaluative judgment in weighing AI's contribution to work (Bearman & Ajjawi, 2023). In conclusion, the evolution of learning through AI in education presents a myriad of ethical, social, and psychological implications that necessitate careful consideration and proactive management. Educators, policymakers, and stakeholders must collaborate to ensure that AI integration in education is done responsibly, ethically, and with a deep understanding of its broader societal impacts.

4. Conclusions

The integration of artificial intelligence (AI) in education has experienced significant developments from 2019 to 2024. Various studies have highlighted the potential benefits and challenges associated with utilizing AI technology in educational contexts. AI in education includes the use of machine learning, natural language processing, and generative AI to improve the learning experience. The application of AI in education has demonstrated positive impacts on learning outcomes, equity, and the quality of higher education. Additionally, AI has been shown to improve conceptual understanding, provide personalized instruction, promote social interaction, and improve assessment methods in physics education.

While AI offers opportunities to improve the educational process, it also brings ethical challenges, especially in K-12 settings. Overcoming these challenges requires a comprehensive understanding of the ethical implications of AI, strategies for managing privacy concerns, and preparation for the integration of AI technologies in educational institutions. Additionally, the use of AI in higher education offers benefits such as more efficient enrollment, improved retention, organizational guidance, and support for students, as well as better resource management and successful online training processes.

As Al advances, there is a growing need for research focused on the effective integration of Al in the classroom, teacher education, and the development of adaptive Al systems that can adapt to diverse teaching and learning contexts. Additionally, the design of an Al instructional framework must consider barriers to participation, interactive design thinking processes, teacher knowledge, steering of Al knowledge for social good, and a holistic understanding of Al teaching. Overall, the impact of Al in education is multifaceted, offering

opportunities to improve learning experiences and educational outcomes, while also raising ethical challenges that need to be addressed for the responsible integration of AI within educational settings.

The implications of the integration of artificial intelligence (AI) in education are vast and cover various aspects, from increasing learning efficiency to the ethical and social challenges that arise. Positively, the application of AI can improve the learning and teaching experience by personalizing learning, increasing the effectiveness of STEM learning, and administrative efficiency. However, the use of AI also brings challenges, such as evaluating its effectiveness in educational contexts, managing data privacy and security, and adapting curricula to include AI literacy.

One of the main implications is the need for a careful approach to integrating AI in educational processes, including the development of policies that take ethical, social and psychological aspects into account. This requires collaboration between educators, researchers and policy makers to ensure that the application of AI is carried out responsibly and takes into account the interests of all parties involved. In addition, comprehensive AI education is also needed to prepare students and educators with sufficient literacy in this field.

However, there are several limitations and areas of future research that need to be considered. One is the need for further research to evaluate the effectiveness of using AI in various educational contexts, as well as to identify and address biases that may arise in AI applications. Additionally, further research is needed to understand the long-term impact of using AI in education, both in terms of learning outcomes and social and psychological implications. Furthermore, the development of more effective and inclusive AI pedagogies is also an exciting area of research, which can help ensure that the application of this technology truly improves the educational experience for all students.

5. References

- Abdullah, A., Taliang, A., Efendi, B., Kasmi, M., & Aman, A. (2024). Examining The Effects of Entrepreneurial Mindset, Digital Marketing Innovation and Networking on SME Performance. Journal of System and Management Sciences, 14(6), 113-127.
- Abgaryan, H., Asatryan, S., & Matevosyan, A. (2023). Revolutionary changes in higher education with artificial intelligence. Main Issues of Pedagogy and Psychology, 10(1), 76-86. https://doi.org/10.24234/miopap.v10i1.454
- Adıgüzel, T., Kaya, M., & Cansu, F. (2023). Revolutionizing education with ai: exploring the transformative potential of chatgpt. Contemporary Educational Technology, 15(3), ep429. https://doi.org/10.30935/cedtech/13152
- Akgün, S. and Greenhow, C. (2021). Artificial intelligence in education: addressing ethical challenges in k-12 settings. Ai and Ethics, 2(3), 431-440. https://doi.org/10.1007/s43681-021-00096-7
- Akinwalere, S. and Ivanov, V. (2022). Artificial intelligence in higher education: challenges and opportunities. Border Crossing, 12(1), 1-15. https://doi.org/10.33182/bc.v12i1.2015
- Akmal, A., Asriany, A., Bando, N., Mihrani, M., & Mariam, M. (2024). Examining The Effects of Technology Adoption, Cultural Values, Social Capital, and Government Policies on Entrepreneurial Success and Social Impact in Indonesia. International Journal of Business, Law, and Education, 5(1), 431-449.

- Alasadi, E. and Baiz, C. (2023). Generative ai in education and research: opportunities, concerns, and solutions. Journal of Chemical Education, 100(8), 2965-2971. https://doi.org/10.1021/acs.jchemed.3c00323
- Alenezi, F. (2023). Artificial intelligence versus arab universities: an enquiry into the saudi context. Humanities and Management Sciences Scientific Journal of King Faisal University, 1-7. https://doi.org/10.37575/h/edu/220038
- Ali, G. (2023). Understanding shifting paradigms of translation studies in 21st century.. https://doi.org/10.21203/rs.3.rs-3151456/v1
- Allen, L. (2023). Ed-ai lit: an interdisciplinary framework for ai literacy in education. Policy Insights From the Behavioral and Brain Sciences, 11(1), 3-10. https://doi.org/10.1177/23727322231220339
- August, S. and Tsaima, A. (2021). Artificial intelligence and machine learning: an instructor's exoskeleton in the future of education., 79-105. https://doi.org/10.1007/978-3-030-58948-6_5
- Axelsen, M., Redmond, P., Heinrich, E., & Henderson, M. (2020). The evolving field of learning analytics research in higher education. Australasian Journal of Educational Technology, 36(2), 1-7. https://doi.org/10.14742/ajet.6266
- Bai, L. (2023). Chatgpt: the cognitive effects on learning and memory. Brain-x, 1(3). https://doi.org/10.1002/brx2.30
- Baker, R., Esbenshade, L., Vitale, J., & Karumbaiah, S. (2022). Using demographic data as predictor variables: a questionable choice.. https://doi.org/10.35542/osf.io/y4wvj
- Banerjee, M., Chiew, D., Patel, K., Johns, I., Chappell, D., Linton, N., ... & Zaman, S. (2021). The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in london (uk) and recommendations for trainers. BMC Medical Education, 21(1). https://doi.org/10.1186/s12909-021-02870-x
- Bearman, M., Ryan, J., & Ajjawi, R. (2022). Discourses of artificial intelligence in higher education: a critical literature review. Higher Education, 86(2), 369-385. https://doi.org/10.1007/s10734-022-00937-2
- Bearman, M. and Ajjawi, R. (2023). Learning to work with the black box: pedagogy for a world with artificial intelligence. British Journal of Educational Technology, 54(5), 1160-1173. https://doi.org/10.1111/bjet.13337
- Bird, K., Castleman, B., Mabel, Z., & Song, Y. (2021). Bringing transparency to predictive analytics: a systematic comparison of predictive modeling methods in higher education. Aera Open, 7, 233285842110376. https://doi.org/10.1177/23328584211037630
- Boscardin, C. (2023). Chatgpt and generative artificial intelligence for medical education: potential impact and opportunity. Academic Medicine, 99(1), 22-27. https://doi.org/10.1097/acm.00000000000005439
- Bowdre, P. (2020). The use of predictive analytics to shift the culture of academic advising toward a focus on student success. Journal of Education & Social Policy, 7(3). https://doi.org/10.30845/jesp.v7n3p3
- Bozkurt, A., Karadeniz, A., Bañeres, D., & Rodríguez, M. (2021). Artificial intelligence and reflections from educational landscape: a review of ai studies in half a century. Sustainability, 13(2), 800. https://doi.org/10.3390/su13020800

- Bujang, S., Selamat, A., Ibrahim, R., Krejcar, O., Fujita, H., & Ghani, N. (2021). Multiclass prediction model for student grade prediction using machine learning. leee Access, 9, 95608-95621. https://doi.org/10.1109/access.2021.3093563
- Chan, K. and Zary, N. (2019). Applications and challenges of implementing artificial intelligence in medical education: integrative review. Jmir Medical Education, 5(1), e13930. https://doi.org/10.2196/13930
- Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: a review. leee Access, 8, 75264-75278. https://doi.org/10.1109/access.2020.2988510
- Chichekian, T. and Benteux, B. (2022). The potential of learning with (and not from) artificial intelligence in education. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.903051
- Crompton, H. and Song, D. (2021). The potential of artificial intelligence in higher education. Revista Virtual Universidad Católica Del Norte, (62), 1-4. https://doi.org/10.35575/rvucn.n62a1
- Cukurova, M., Kent, C., & Luckin, R. (2019). Artificial intelligence and multimodal data in the service of human decision-making: a case study in debate tutoring. British Journal of Educational Technology, 50(6), 3032-3046. https://doi.org/10.1111/bjet.12829
- Dwivedi, Y., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. (2021).

 Artificial intelligence (ai): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
- Faruqe, F., Watkins, R., & Medsker, L. (2022). Competency model approach to ai literacy: research-based path from initial framework to model. Advances in Artificial Intelligence and Machine Learning, 02(04), 580-587. https://doi.org/10.54364/aaiml.2022.1140
- Firat, M. (2023). Integrating ai applications into learning management systems to enhance e-learning. Öğretim Teknolojisi Ve Hayat Boyu Öğrenme Dergisi Instructional Technology and Lifelong Learning, 1-14. https://doi.org/10.52911/itall.1244453
- Fu, S., Gu, H., & Yang, B. (2020). The affordances of ai-enabled automatic scoring applications on learners' continuous learning intention: an empirical study in china. British Journal of Educational Technology, 51(5), 1674-1692. https://doi.org/10.1111/bjet.12995
- Firat, M. (2023). How chat gpt can transform autodidactic experiences and open education?.. https://doi.org/10.31219/osf.io/9ge8m
- Gado, S., Kempen, R., Lingelbach, K., & Bipp, T. (2021). Artificial intelligence in psychology: how can we enable psychology students to accept and use artificial intelligence?.

 Psychology Learning & Teaching, 21(1), 37-56. https://doi.org/10.1177/14757257211037149
- Gibson, D., Kovanović, V., Dexter, S., & Feng, S. (2023). Learning theories for artificial intelligence promoting learning processes. British Journal of Educational Technology, 54(5), 1125-1146. https://doi.org/10.1111/bjet.13341
- Gupta, K. and Bhaskar, P. (2020). Inhibiting and motivating factors influencing teachers' adoption of ai-based teaching and learning solutions: prioritization using analytic hierarchy process. Journal of Information Technology Education Research, 19, 693-723. https://doi.org/10.28945/4640

- Hannan, E. (2021). Ai: new source of competitiveness in higher education. Competitiveness Review an International Business Journal Incorporating Journal of Global Competitiveness, 33(2), 265-279. https://doi.org/10.1108/cr-03-2021-0045
- Harry, A. (2023). Role of ai in education. Interdiciplinary Journal and Hummanity (Injurity), 2(3), 260-268. https://doi.org/10.58631/injurity.v2i3.52
- Haryanto, S., & El Syam, R. S. (2024). SPIRITUAL SUFISM IN THE FACT OF THE CREATION OF THE DEVIL SUFISME SPIRITUAL DALAM HAKIKAT PENCIPTAAN IBLIS. Jurnal Pendidikan: Kajian dan Implementasi, 6(1).
- Haryanto, S., & Muslih, M. (2024). Integration of Sufism and Transpersonal Psychology. International Journal of Religion, 5(5), 1041-1047.
- Haryanto, S., Poncowati, S. D., Pattiasina, P. J., Astafi, R., & Nugroho, W. (2024). Improving Literacy Skills and Memorisation of Short Verses in Early Childhood. Al-Hijr: Journal of Adulearn World, 3(1).
- Haryanto, S. (2024). Relevansi Dimensi Spiritual Terhadap Pendidikan Karakter. Jurnal Keislaman, 7(1), 57-65.
- Hashim, S., Omar, M., Jalil, H., & Sharef, N. (2022). Trends on technologies and artificial intelligence in education for personalized learning: systematic literature review. International Journal of Academic Research in Progressive Education and Development, 11(1). https://doi.org/10.6007/ijarped/v11-i1/12230
- Herodotou, C., Rienties, B., Verdin, B., & Boroowa, A. (2019). Predictive learning analytics 'at scale': guidelines to successful implementation in higher education. Journal of Learning Analytics, 6(1). https://doi.org/10.18608/jla.2019.61.5
- Hinojo-Lucena, F., Díaz, I., Reche, M., & Rodríguez, J. (2019). Artificial intelligence in higher education: a bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), 51. https://doi.org/10.3390/educsci9010051
- How, M. and Hung, D. (2019). Educational stakeholders' independent evaluation of an artificial intelligence-enabled adaptive learning system using bayesian network predictive simulations. Education Sciences, 9(2), 110. https://doi.org/10.3390/educsci9020110
- Hutson, J., Jeevanjee, T., Graaf, V., Lively, J., Weber, J., Weir, G., ... & Edele, S. (2022). Artificial intelligence and the disruption of higher education: strategies for integrations across disciplines. Creative Education, 13(12), 3953-3980. https://doi.org/10.4236/ce.2022.1312253
- Hütter, M., Niese, Z., & Ihmels, M. (2022). Bridging the gap between autonomous and predetermined paradigms: the role of sampling in evaluative learning. Journal of Experimental Psychology General, 151(8), 1972-1998. https://doi.org/10.1037/xge0001172
- Ishaaq, N. (2023). Re: investigating the impact of innovative ai chatbot on post-pandemic medical education and clinical assistance: a comprehensive analysis. Australian and New Zealand Journal of Surgery, 94(3), 494-494. https://doi.org/10.1111/ans.18721
- Järvelä, S., Nguyen, A., & Hadwin, A. (2023). Human and artificial intelligence collaboration for socially shared regulation in learning. British Journal of Educational Technology, 54(5), 1057-1076. https://doi.org/10.1111/bjet.13325
- Judijanto, L., Syamsulbahri, S., Abdullah, A., & Harsono, I. (2024). Analisis Bibliometrik tentang Keterkaitan Inovasi Teknologi dan Pengembangan Bisnis. Jurnal Bisnis dan Manajemen West Science, 3(01), 66-74.

- Kang, H. (2023). Artificial intelligence and its influence in adult learning in china. Higher Education Skills and Work-Based Learning, 13(3), 450-464. https://doi.org/10.1108/heswbl-01-2023-0017
- Kasmi, M., Abdullah, A., Makkulawu, A. R., Aman, A., & Yusuf, Y. M. (2024). Marine Ornamental Fish Marketing Sustainability Strategy. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 55(3).
- Kim, J. and Lee, S. (2022). Are two heads better than one?: the effect of student-ai collaboration on students' learning task performance. Techtrends, 67(2), 365-375. https://doi.org/10.1007/s11528-022-00788-9
- Kochmar, E., Vu, D., Belfer, R., Gupta, V., Serban, I., & Pineau, J. (2021). Automated data-driven generation of personalized pedagogical interventions in intelligent tutoring systems. International Journal of Artificial Intelligence in Education, 32(2), 323-349. https://doi.org/10.1007/s40593-021-00267-x
- Krakowski, A., Greenwald, E., Hurt, T., Nonnecke, B., & Cannady, M. (2022). Authentic integration of ethics and ai through sociotechnical, problem-based learning. Proceedings of the Aaai Conference on Artificial Intelligence, 36(11), 12774-12782. https://doi.org/10.1609/aaai.v36i11.21556
- Kurvinen, E., Järvinen, J., & Kaila, E. (2022). Artificial intelligence in education where are we now?.. https://doi.org/10.36315/2022v2end087
- Lazarus, M., Truong, M., Douglas, P., & Selwyn, N. (2022). Artificial intelligence and clinical anatomical education: promises and perils. Anatomical Sciences Education, 17(2), 249-262. https://doi.org/10.1002/ase.2221
- Li, Y. and Yang, P. (2023). Higher education worries and response in the era of artificial intelligence. Education. https://doi.org/10.54647/education880398
- Lin, X., Chen, L., Chan, K., Peng, S., Chen, X., Liu, J., ... & Hu, Q. (2022). Teachers' perceptions of teaching sustainable artificial intelligence: a design frame perspective. Sustainability, 14(13), 7811. https://doi.org/10.3390/su14137811
- Loewenstein, D., Curiel, R., Duara, R., & Buschke, H. (2017). Novel cognitive paradigms for the detection of memory impairment in preclinical alzheimer's disease. Assessment, 25(3), 348-359. https://doi.org/10.1177/1073191117691608
- Luckin, R. and Cukurova, M. (2019). Designing educational technologies in the age of ai: a learning sciences-driven approach. British Journal of Educational Technology, 50(6), 2824-2838. https://doi.org/10.1111/bjet.12861
- Lukianets, H. and Lukianets, T. (2023). Promises and perils of ai use on the tertiary educational level. Грааль Науки, (25), 306-311. https://doi.org/10.36074/grail-of-science.17.03.2023.053
- Mahligawati, F. (2023). Artificial intelligence in physics education: a comprehensive literature review. Journal of Physics Conference Series, 2596(1), 012080. https://doi.org/10.1088/1742-6596/2596/1/012080
- Marino, M., Vasquez, E., Dieker, L., Basham, J., & Blackorby, J. (2023). The future of artificial intelligence in special education technology. Journal of Special Education Technology, 38(3), 404-416. https://doi.org/10.1177/01626434231165977
- Mbhiza, H. (2021). Shifting paradigms: rethinking education during and post-covid-19 pandemic. Research in Social Sciences and Technology, 6(2), 279-289. https://doi.org/10.46303/ressat.2021.31

- Mina, P., Solon, I., Sanchez, F., Delante, T., Villegas, J., Basay, F., ... & Mutya, R. (2023). Leveraging education through artificial intelligence virtual assistance: a case study of visually impaired learners. Pedagogical Research, 8(1), em0150. https://doi.org/10.29333/pr/12735
- Muslih, M., Yahya, Y. K., Haryanto, S., & Musthofa, A. A. (2024). Al-Qur'an-Based Paradigm in Science Integration at The Al-Qur'an Science University, Indonesia. HTS Teologiese Studies/Theological Studies, 80(1), 9459.
- Ouyang, F., Wu, M., Zheng, L., Zhang, L., & Jiao, P. (2023). Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-022-00372-4
- Park, W. and Kwon, H. (2023). Implementing artificial intelligence education for middle school technology education in republic of korea. International Journal of Technology and Design Education, 34(1), 109-135. https://doi.org/10.1007/s10798-023-09812-2
- Polak, S., Schiavo, G., & Zancanaro, M. (2022). Teachers' perspective on artificial intelligence education: an initial investigation.. https://doi.org/10.1145/3491101.3519866
- Popenici, S. and Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1). https://doi.org/10.1186/s41039-017-0062-8
- Rajaei, A. (2023). Teaching in the age of ai/chatgpt in mental-health-related fields. The Family Journal, 32(1), 6-10. https://doi.org/10.1177/10664807231209721
- Sadiku, M., Ashaolu, T., Ajayi-Majebi, A., & Musa, S. (2021). Artificial intelligence in education. International Journal of Scientific Advances, 2(1). https://doi.org/10.51542/ijscia.v2i1.2
- Sadler, T. (2024). Artificial intelligence and the journal of research in science teaching. Journal of Research in Science Teaching, 61(4), 739-743. https://doi.org/10.1002/tea.21933
- Sari, J. and Purwanta, E. (2021). The implementation of artificial intelligence in stem-based creative learning in the society 5.0 era. Tadris Jurnal Keguruan Dan Ilmu Tarbiyah, 6(2), 433-440. https://doi.org/10.24042/tadris.v6i2.10135
- Saykili, A. (2019). Higher education in the digital age: the impact of digital connective technologies. Journal of Educational Technology and Online Learning, 2(1), 1-15. https://doi.org/10.31681/jetol.516971
- Şekeroğlu, B., Abiyev, R., İlhan, A., Arslan, M., & Idoko, J. (2021). Systematic literature review on machine learning and student performance prediction: critical gaps and possible remedies. Applied Sciences, 11(22), 10907. https://doi.org/10.3390/app112210907
- Shaik, T., Tao, X., Li, Y., Dann, C., McDonald, J., Redmond, P., ... & Galligan, L. (2022). A review of the trends and challenges in adopting natural language processing methods for education feedback analysis. Ieee Access, 10, 56720-56739. https://doi.org/10.1109/access.2022.3177752
- Sohel, R., Rahman, R., & Habib, M. (2021). Integrated mobile learning education supply chain management for higher learning institution. Aiub Journal of Science and Engineering (Ajse), 20(4), 166-175. https://doi.org/10.53799/ajse.v20i4.289
- Squire, K. (2009). Video game-based learning., 435-467. https://doi.org/10.1002/9780470592663.ch13
- Su, J. (2023). ai literacy curriculum and its relation to children's perceptions of robots and attitudes towards engineering and science: an intervention study in early childhood

- education. Journal of Computer Assisted Learning, 40(1), 241-253. https://doi.org/10.1111/jcal.12867
- Suarez, C., Bucheli, V., & Ordoñez, H. (2023). Artificial intelligence and computer-supported collaborative learning in programming: a systematic mapping study. Tecnura, 27(75), 175-206. https://doi.org/10.14483/22487638.19637
- Sun, X., Yuan, F., Zheng, W., Huang, Y., & Li, Y. (2022). Big educational data analytics, prediction and recommendation: a survey. Journal of Circuits Systems and Computers, 31(09). https://doi.org/10.1142/s0218126622300070
- Suwardi, A., Wang, F., Ke-min, X., Han, M., Teo, P., Wang, P., ... & Loh, X. (2021). Machine learning-driven biomaterials evolution. Advanced Materials, 34(1). https://doi.org/10.1002/adma.202102703
- Todri, A., Papajorgji, P., Moskowitz, H., & Scalera, F. (2020). Perceptions regarding distance learning in higher education, smoothing the transition. Contemporary Educational Technology, 13(1), ep287. https://doi.org/10.30935/cedtech/9274
- Tu, Y. (2020). A deep learning approach to behavior-based learner modeling.. https://doi.org/10.48550/arxiv.2001.08328
- Vall, R. and Araya, F. (2023). Exploring the benefits and challenges of ai-language learning tools.

 The International Journal of Social Sciences and Humanities Invention, 10(01), 7569-7576. https://doi.org/10.18535/ijsshi/v10i01.02
- Wang, C., Xie, H., Wang, S., Yang, S., & Hu, L. (2023). Radiological education in the era of artificial intelligence: a review. Medicine, 102(1), e32518. https://doi.org/10.1097/md.0000000000032518
- Wang, R., Sun, Z., & Zhou, Y. (2023). Research on the new model of "internet + education" based on artificial intelligence.. https://doi.org/10.1117/12.2670426
- Wang, R. and Orr, J. (2019). Use of data analytics in supporting the advising of undecided students. Journal of College Student Retention Research Theory & Practice, 23(4), 824-849. https://doi.org/10.1177/1521025119880819
- Wang, X., He, X., Wei, J., Liu, J., Li, Y., & Liu, X. (2023). Application of artificial intelligence to the public health education. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1087174
- Williams, R., Park, H., Oh, L., & Breazeal, C. (2019). Popbots: designing an artificial intelligence curriculum for early childhood education. Proceedings of the Aaai Conference on Artificial Intelligence, 33(01), 9729-9736. https://doi.org/10.1609/aaai.v33i01.33019729
- Xu, W. and Ouyang, F. (2022). The application of ai technologies in stem education: a systematic review from 2011 to 2021. International Journal of Stem Education, 9(1). https://doi.org/10.1186/s40594-022-00377-5
- Yang, D. and Wang, Y. (2020). Hybrid physical education teaching and curriculum design based on a voice interactive artificial intelligence educational robot. Sustainability, 12(19), 8000. https://doi.org/10.3390/su12198000
- Yau, K., Chai, C., Chiu, T., Meng, H., King, I., & Yam, Y. (2022). A phenomenographic approach on teacher conceptions of teaching artificial intelligence (ai) in k-12 schools. Education and Information Technologies, 28(1), 1041-1064. https://doi.org/10.1007/s10639-022-11161-x

- Yildirim, Y., Arslan, E., Yildirim, K., & Bisen, I. (2021). Reimagining education with artificial intelligence. Eurasian Journal of Higher Education, 2(4), 32-46. https://doi.org/10.31039/ejohe.2021.4.52
- Yürüm, O., Temizel, T., & Yildirim, S. (2022). The use of video clickstream data to predict university students' test performance: a comprehensive educational data mining approach. Education and Information Technologies, 28(5), 5209-5240. https://doi.org/10.1007/s10639-022-11403-y
- Zawacki-Richter, O., Marín, V., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education where are the educators?. International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0171-0
- Zhai, X., Neumann, K., & Krajcik, J. (2023). Editorial: ai for tackling stem education challenges. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1183030
- Zhai, X. and Nehm, R. (2023). ai and formative assessment: the train has left the station. Journal of Research in Science Teaching, 60(6), 1390-1398. https://doi.org/10.1002/tea.21885
- Zhang, J. (2023). Design and simulation of autonomous learning platform for constructive english teaching based on artificial intelligence.. https://doi.org/10.1117/12.2683093
- Zheng, R. and Badarch, T. (2022). Research on applications of artificial intelligence in education.

 American Journal of Computer Science and Technology, 5(2), 72. https://doi.org/10.11648/j.ajcst.20220502.17